We consider process tomography for unitary quantum channels. Given access to an unknown unitary channel acting on a $\textsf{d}$-dimensional qudit, we aim to output a classical description of a unitary that is $\varepsilon$-close to the unknown unitary in diamond norm. We design an algorithm achieving error $\varepsilon$ using $O(\textsf{d}^2/\varepsilon)$ applications of the unknown channel and only one qudit. This improves over prior results, which use $O(\textsf{d}^3/\varepsilon^2)$ [via standard process tomography] or $O(\textsf{d}^{2.5}/\varepsilon)$ [Yang, Renner, and Chiribella, PRL 2020] applications. To show this result, we introduce a simple technique to "bootstrap" an algorithm that can produce constant-error estimates to one that can produce $\varepsilon$-error estimates with the Heisenberg scaling. Finally, we prove a complementary lower bound showing that estimation requires $\Omega(\textsf{d}^2/\varepsilon)$ applications, even with access to the inverse or controlled versions of the unknown unitary. This shows that our algorithm has both optimal query complexity and optimal space complexity.


翻译:我们考虑对单一量子频道进行进程映射。 鉴于访问一个以 $\ textsf{d}d}$- 维维度运行的未知单一频道, 我们的目标是输出一个典型的单项描述, 即$\ varepsilon$- 接近钻石规范中未知的单项。 我们设计一个算法, 使用 $O( textsf{d<unk> 2/\\ varepsilon) 来实现错误 $\ varepsilon$ 。 为了显示这个结果, 我们引入了一种简单的算法“ 启动”, 一种能够生成恒定度估计值的算法。 先前的结果使用 $( textsfsf{d{ d<unk> 3/ varepsilon) $[ 或 $( t$( table comm) 的单项( varepsi) 。 最后, 我们证明一个匹配的下限算法的算法, 需要最优化的 和最精确的算法, 显示我们最优的 。</s>

0
下载
关闭预览

相关内容

VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
80+阅读 · 2022年7月16日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
54+阅读 · 2022年1月1日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员