We consider process tomography for unitary quantum channels. Given access to an unknown unitary channel acting on a $\textsf{d}$-dimensional qudit, we aim to output a classical description of a unitary that is $\varepsilon$-close to the unknown unitary in diamond norm. We design an algorithm achieving error $\varepsilon$ using $O(\textsf{d}^2/\varepsilon)$ applications of the unknown channel and only one qudit. This improves over prior results, which use $O(\textsf{d}^3/\varepsilon^2)$ [via standard process tomography] or $O(\textsf{d}^{2.5}/\varepsilon)$ [Yang, Renner, and Chiribella, PRL 2020] applications. To show this result, we introduce a simple technique to "bootstrap" an algorithm that can produce constant-error estimates to one that can produce $\varepsilon$-error estimates with the Heisenberg scaling. Finally, we prove a complementary lower bound showing that estimation requires $\Omega(\textsf{d}^2/\varepsilon)$ applications, even with access to the inverse or controlled versions of the unknown unitary. This shows that our algorithm has both optimal query complexity and optimal space complexity.
翻译:我们考虑对单一量子频道进行进程映射。 鉴于访问一个以 $\ textsf{d}d}$- 维维度运行的未知单一频道, 我们的目标是输出一个典型的单项描述, 即$\ varepsilon$- 接近钻石规范中未知的单项。 我们设计一个算法, 使用 $O( textsf{d<unk> 2/\\ varepsilon) 来实现错误 $\ varepsilon$ 。 为了显示这个结果, 我们引入了一种简单的算法“ 启动”, 一种能够生成恒定度估计值的算法。 先前的结果使用 $( textsfsf{d{ d<unk> 3/ varepsilon) $[ 或 $( t$( table comm) 的单项( varepsi) 。 最后, 我们证明一个匹配的下限算法的算法, 需要最优化的 和最精确的算法, 显示我们最优的 。</s>