The traditional ML development methodology does not enable a large number of contributors, each with distinct objectives, to work collectively on the creation and extension of a shared intelligent system. Enabling such a collaborative methodology can accelerate the rate of innovation, increase ML technologies accessibility and enable the emergence of novel capabilities. We believe that this novel methodology for ML development can be demonstrated through a modularized representation of ML models and the definition of novel abstractions allowing to implement and execute diverse methods for the asynchronous use and extension of modular intelligent systems. We present a multiagent framework for the collaborative and asynchronous extension of dynamic large-scale multitask systems.
翻译:传统的ML开发方法不能使众多贡献者(每个贡献者都有不同的目标)共同努力,建立和扩大共享的智能系统,使这种协作方法能够加快创新速度,增加ML技术的可获取性,并促成新能力的出现。我们认为,这种新的ML开发方法可以通过模块化的ML模型代表方式和新颖的抽象概念定义加以证明,从而能够实施和执行不同的方法,实现模块智能系统的非同步使用和扩展。我们为动态大型多任务系统的协作和同步扩展提供了一个多试剂框架。