It is well known that modeling and forecasting realized covariance matrices of asset returns play a crucial role in the field of finance. The availability of high frequency intraday data enables the modeling of the realized covariance matrices directly. However, most of the models available in the literature depend on strong structural assumptions and they often suffer from the curse of dimensionality. We propose an end-to-end trainable model built on the CNN and Convolutional LSTM (ConvLSTM) which does not require to make any distributional or structural assumption but could handle high-dimensional realized covariance matrices consistently. The proposed model focuses on local structures and spatiotemporal correlations. It learns a nonlinear mapping that connect the historical realized covariance matrices to the future one. Our empirical studies on synthetic and real-world datasets demonstrate its excellent forecasting ability compared with several advanced volatility models.
翻译:众所周知,资产收益的建模和预测已实现的共变矩阵在金融领域发挥着关键作用。高频内部数据的提供使得能够直接对已实现的共变矩阵进行建模。然而,文献中的大多数模型依赖于强有力的结构假设,而且往往受到维度的诅咒。我们提议在CNN和Convolutional LSTM(ConvolLSTM)(ConvlusTM)(ConvlusTM)(ConvlusTM)(ConvlusLSTM)(Convlus)(ConvlusTM)(Convluslus)(Convorational LSTM)(ConvlusTM)(Convlus)(ConvlusTM)(Convlus)(ConvlusTM)(Convlusional LSTM) (Contralation)的基础上建立最终可受训模型。我们建议,该模型不需要做出任何分配或结构性的假设,但能够一致地处理高维化已实现的共变数的共变数项共变数。拟议模型,拟议的模型侧重于的模型侧重于重。拟议的模型的重点是是本地结构和。它所学的非线图。它所学非线图图。它所学的图图。它。它能将连接。它能与未来连接。它能显示它的精。它。它。它与未来。我们关于合成和真实的实验性图。它。它与几个的实验性图的实验性图。它。我们关于合成的实验性图。我们关于合成和实际的实验性模型的实验性数据集的实验性图的实验性图。我们关于合成的实验性模型的实验性图的实验性研究显示它的预测能力。我们关于合成的实验性模型显示的实验性模型与若干。我们关于合成的实验性图。我们关于合成的实验性图的实验性图。它。我们关于合成的实验性图。我们关于合成的实验性图。我们关于合成的实验性模型表明它的预测能力。我们关于合成的实验性模型表明它的实验性模型的实验性模型的实验性模型表明它的预测能力。