Just as rank-metric or Gabidulin codes may be used to construct rate--diversity tradeoff optimal space--time codes, a recently introduced generalization for the sum-rank metric -- linearized Reed--Solomon codes -- accomplishes the same in the case of multiple fading blocks. In this paper, we provide the first explicit construction of minimal delay rate--diversity optimal multiblock space--time codes as an application of linearized Reed--Solomon codes. We also provide sequential decoders for these codes and, more generally, space--time codes constructed from finite field codes. Simulation results show that the proposed codes can outperform full diversity codes based on cyclic division algebras at low SNRs as well as utilize significantly smaller constellations.
翻译:正如可以使用定级或加比杜林代码来构建标准多样化交换最佳空间-时间代码一样,最近引入的对总标准标准 -- -- 线性Reed-Solomon代码 -- -- 的概括化,在多个淡化区块中也实现了同样的结果。在本文中,我们首次明确构建了最小延迟率-多样性最佳多区块空间-时间代码,作为线性Reed-Solomon代码的应用。我们还提供了这些代码的顺序解码,以及更一般而言,根据有限的实地代码构建的空间-时间代码。模拟结果显示,拟议的代码可以超越基于低空间核循环分代数的完整多样性代码,并利用小得多的星座。