This manuscript proposes to extend the information set of time-series regression trees with latent stationary factors extracted via state-space methods. In doing so, this approach generalises time-series regression trees on two dimensions. First, it allows to handle predictors that exhibit measurement error, non-stationary trends, seasonality and/or irregularities such as missing observations. Second, it gives a transparent way for using domain-specific theory to inform time-series regression trees. Empirically, ensembles of these factor-augmented trees provide a reliable approach for macro-finance problems. This article highlights it focussing on the lead-lag effect between equity volatility and the business cycle in the United States.
翻译:在这篇论文中,我们提出了一种通过状态空间方法提取潜在稳定因子,并将其扩展到时间序列回归树信息集的方法。这样做可以从两个维度推广时间序列回归树的应用。首先,可以处理具有测量误差,非平稳趋势,季节性和/或缺失观测等异常情况的预测因子。其次,这种方法可以提供一种透明的方式,将领域特定理论应用于时间序列回归树。实证结果表明,这些因子增强树的集成在宏金融问题上提供了可靠的方法。本文以美国股票波动率和商业周期之间的先导滞后效应为重点加以阐述。