Learning a disentangled representation of the latent space has become one of the most fundamental problems studied in computer vision. Recently, many Generative Adversarial Networks (GANs) have shown promising results in generating high fidelity images. However, studies to understand the semantic layout of the latent space of pre-trained models are still limited. Several works train conditional GANs to generate faces with required semantic attributes. Unfortunately, in these attempts, the generated output is often not as photo-realistic as the unconditional state-of-the-art models. Besides, they also require large computational resources and specific datasets to generate high fidelity images. In our work, we have formulated a Markov Decision Process (MDP) over the latent space of a pre-trained GAN model to learn a conditional policy for semantic manipulation along specific attributes under defined identity bounds. Further, we have defined a semantic age manipulation scheme using a locally linear approximation over the latent space. Results show that our learned policy samples high fidelity images with required age alterations, while preserving the identity of the person.


翻译:学习潜伏空间的分解表达方式已成为计算机视觉中研究的最根本问题之一。 最近,许多创世对立网络(GANs)在生成高忠诚图像方面显示出令人乐观的结果。 然而,为了解预先训练的模型潜在空间的语义布局而进行的研究仍然有限。 几项工作训练有条件的GANs, 以生成必要的语义属性的面孔。 不幸的是,在这些尝试中, 产生的输出往往没有像无条件最新模型那样真实的图像。 此外, 它们还需要大量的计算资源和具体的数据集来生成高忠诚图像。 在我们的工作中, 我们为预先训练过的GAN模型的潜在空间制定了Markov决定程序(MDP ), 以学习一种有条件的政策, 用于在特定身份界限下的特定属性进行语义性操纵。 此外, 我们定义了一种语义年龄操纵计划, 使用局部的线性近近于暗处。 结果显示, 我们所学的政策对高忠诚图像进行了必要的年龄改变, 同时保留了个人的身份。

0
下载
关闭预览

相关内容

首篇「课程学习(Curriculum Learning)」2021综述论文
专知会员服务
50+阅读 · 2021年1月31日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
95+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
17+阅读 · 2021年2月15日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员