Relative radiometric normalization (RRN) mosaicking among multiple remote sensing images is crucial for the downstream tasks, including map-making, image recognition, semantic segmentation, and change detection. However, there are often seam lines on the mosaic boundary and radiometric contrast left, especially in complex scenarios, making the appearance of mosaic images unsightly and reducing the accuracy of the latter classification/recognition algorithms. This paper renders a novel automatical approach to eliminate seam lines in complex RRN mosaicking scenarios. It utilizes the histogram matching on the overlap area to alleviate radiometric contrast, Poisson editing to remove the seam lines, and merging procedure to determine the normalization transfer order. Our method can handle the mosaicking seam lines with arbitrary shapes and images with extreme topological relationships (with a small intersection area). These conditions make the main feathering or blending methods, e.g., linear weighted blending and Laplacian pyramid blending, unavailable. In the experiment, our approach visually surpasses the automatic methods without Poisson editing and the manual blurring and feathering method using GIMP software.


翻译:在多个遥感图像中进行相对辐射分解(RRN)对于下游任务至关重要,包括地图制作、图像识别、语义分解和变化检测。然而,在马赛克边界和辐射度对比左侧往往存在接缝线和辐射度对比,特别是在复杂的情景下,使马赛克图像的外观不清晰,降低了后者的分类/识别算法的准确性。本文提供了在复杂的RRRN摩赛克情景中消除接缝线的新型自动方法。它利用重叠区域的直方图匹配来减轻辐射度对比, Poisson 编辑去掉接缝线和合并程序以确定正常转移顺序。我们的方法可以处理带有任意形状和图像的断层线线和与极端表层关系(具有小交叉区域)的图像。这些条件使得主要的羽毛或混合方法,例如线性加权混合和拉巴氏金形混合方法无法使用。在实验中,我们的方法在不进行Poisson编辑的情况下,不使用手模模糊和羽毛法方法,直视超过自动方法。

0
下载
关闭预览

相关内容

【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
64+阅读 · 2021年8月7日
专知会员服务
141+阅读 · 2021年3月17日
最新《自动微分》综述教程,71页ppt
专知会员服务
21+阅读 · 2020年11月22日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
必读的10篇 CVPR 2019【生成对抗网络】相关论文和代码
专知会员服务
31+阅读 · 2020年1月10日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
已删除
将门创投
5+阅读 · 2018年7月25日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
0+阅读 · 2021年8月10日
Attend More Times for Image Captioning
Arxiv
6+阅读 · 2018年12月8日
Arxiv
4+阅读 · 2018年5月24日
Arxiv
5+阅读 · 2018年5月22日
Arxiv
9+阅读 · 2018年3月10日
VIP会员
相关VIP内容
【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
64+阅读 · 2021年8月7日
专知会员服务
141+阅读 · 2021年3月17日
最新《自动微分》综述教程,71页ppt
专知会员服务
21+阅读 · 2020年11月22日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
必读的10篇 CVPR 2019【生成对抗网络】相关论文和代码
专知会员服务
31+阅读 · 2020年1月10日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
已删除
将门创投
5+阅读 · 2018年7月25日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员