We study the training of Vision Transformers for semi-supervised image classification. Transformers have recently demonstrated impressive performance on a multitude of supervised learning tasks. Surprisingly, we find Vision Transformers perform poorly on a semi-supervised ImageNet setting. In contrast, Convolutional Neural Networks (CNNs) achieve superior results in small labeled data regime. Further investigation reveals that the reason is CNNs have strong spatial inductive bias. Inspired by this observation, we introduce a joint semi-supervised learning framework, Semiformer, which contains a Transformer branch, a Convolutional branch and a carefully designed fusion module for knowledge sharing between the branches. The Convolutional branch is trained on the limited supervised data and generates pseudo labels to supervise the training of the transformer branch on unlabeled data. Extensive experiments on ImageNet demonstrate that Semiformer achieves 75.5\% top-1 accuracy, outperforming the state-of-the-art. In addition, we show Semiformer is a general framework which is compatible with most modern Transformer and Convolutional neural architectures.


翻译:我们研究对视觉变异器进行半监督图像分类的培训。 变异器最近展示了众多监督学习任务的令人印象深刻的绩效。 令人惊讶的是, 我们发现视觉变异器在半监督图像网络设置上表现不佳。 相反, 革命神经网络(CNNs)在小型标签数据系统中取得了优异效果。 进一步的调查显示, CNNs 的原因具有很强的空间感应偏差。 在这项观察的启发下, 我们引入了一个联合半监督学习框架, 包括一个变异器分支、 Convolution 分支以及一个精心设计的用于各分支之间知识共享的聚合模块。 革命分支在有限的监督数据上受到训练, 并生成假标签以监督变异器分支在未标签数据上的培训。 图像网络的广泛实验显示, 半成像器实现了75.5 ⁇ 顶级1 的准确度, 超过了状态。 此外, 我们显示, 变异器是一个与最现代变异器和进神经结构兼容的总框架。

0
下载
关闭预览

相关内容

【Tutorial】计算机视觉中的Transformer,98页ppt
专知会员服务
144+阅读 · 2021年10月25日
专知会员服务
22+阅读 · 2021年9月20日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
专知会员服务
42+阅读 · 2020年12月18日
最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
Transformer模型-深度学习自然语言处理,17页ppt
专知会员服务
103+阅读 · 2020年8月30日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Arxiv
0+阅读 · 2022年1月25日
Arxiv
0+阅读 · 2022年1月21日
Arxiv
19+阅读 · 2021年4月8日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
VIP会员
相关VIP内容
【Tutorial】计算机视觉中的Transformer,98页ppt
专知会员服务
144+阅读 · 2021年10月25日
专知会员服务
22+阅读 · 2021年9月20日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
专知会员服务
42+阅读 · 2020年12月18日
最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
Transformer模型-深度学习自然语言处理,17页ppt
专知会员服务
103+阅读 · 2020年8月30日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关论文
Arxiv
0+阅读 · 2022年1月25日
Arxiv
0+阅读 · 2022年1月21日
Arxiv
19+阅读 · 2021年4月8日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
Top
微信扫码咨询专知VIP会员