Convolutional Neural Networks (CNNs), architectures consisting of convolutional layers, have been the standard choice in vision tasks. Recent studies have shown that Vision Transformers (VTs), architectures based on self-attention modules, achieve comparable performance in challenging tasks such as object detection and semantic segmentation. However, the image processing mechanism of VTs is different from that of conventional CNNs. This poses several questions about their generalizability, robustness, reliability, and texture bias when used to extract features for complex tasks. To address these questions, we study and compare VT and CNN architectures as feature extractors in object detection and semantic segmentation. Our extensive empirical results show that the features generated by VTs are more robust to distribution shifts, natural corruptions, and adversarial attacks in both tasks, whereas CNNs perform better at higher image resolutions in object detection. Furthermore, our results demonstrate that VTs in dense prediction tasks produce more reliable and less texture-biased predictions.


翻译:由革命性神经网络(CNNs)组成的结构,由革命性神经网络(CNNs)组成,一直是愿景任务的标准选择。最近的研究显示,基于自我注意模块的愿景变异器(VTs),在物体探测和语义分割等具有挑战性的任务中取得了可比的绩效。然而,VT的图像处理机制不同于常规CNN。这提出了几个问题,涉及它们的一般性、稳健性、可靠性和用于提取复杂任务特征时的纹理偏差。为了解决这些问题,我们研究并比较VT和CNN的架构,将其作为物体探测和语义分割的特征提取器。我们广泛的实证结果表明,VTs产生的特征对于分布变化、自然腐败和对立攻击都更为强大,而CNN在物体探测中更能使用更高的图像分辨率。此外,我们的结果显示,在密集预测任务中的VTs产生更可靠和更少的文字偏向性的预测。

0
下载
关闭预览

相关内容

VTS:VLSI Test Symposium Explanation:超大规模集成电路测试研讨会。 Publisher:IEEE。 SIT: http://dblp.uni-trier.de/db/conf/vts/
最新《Transformers模型》教程,64页ppt
专知会员服务
305+阅读 · 2020年11月26日
专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
39+阅读 · 2021年11月11日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
103+阅读 · 2021年6月8日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员