The biclique cover number $(\text{bc})$ of a graph $G$ is referred to as the least number of complete bipartite (biclique) subgraphs that are required to cover all the edges of the graph. In this paper, we show that the biclique cover number $(\text{bc})$ of a graph $G$ is no less than $\lceil \log_2(\text{mc}(G^c)) \rceil$, where $\text{mc}(G^c)$ is the number of maximal cliques of the complementary graph $G^c$, i.e., the number of maximal independent sets of $G$. We also show that $\text{bc}(G) \leq \chi_r'(\mathcal{T}_{\mathcal{K}^c})$ where $G$ is a co-chordal graph such that each vertex is in at most two maximal independent sets and $\chi_r'(\mathcal{T}_{\mathcal{K}^c})$ is the optimal edge-ranking number of a clique tree of $G^c$. By identifying the new lower and upper bounds of $\text{bc}(G)$, we prove that $\text{bc}(G) = \lceil \log_2(\text{mc}(G^c)) \rceil$ if $G^c$ is a path or windmill graph.
翻译:(\ text{bc}) $( g} c)\ rcele$, 其中 $\ text{ mc} (G} c) 是补充图形 $G\ c$, 也就是说, 最大独立的 $G$ 的数。 我们还显示 $\ text{b} (G)\ leq\ chi_r} (mathcal{T\\\ mathc}{K}c} 美元, 其中$G$是共同曲解的数, 其中, 美元(rc{mc} (G) 美元是最大独立的数, 美元=c\\\ g=r=r_ ligr> ral_ rook_ g\\\\\\\\\\\\\\ c} ligr_ c) 美元, 其中, 美元是最下级的 美元。</s>