The Internet of Things (IoT) will be ripe for the deployment of novel machine learning algorithms for both network and application management. However, given the presence of massively distributed and private datasets, it is challenging to use classical centralized learning algorithms in the IoT. To overcome this challenge, federated learning can be a promising solution that enables on-device machine learning without the need to migrate the private end-user data to a central cloud. In federated learning, only learning model updates are transferred between end-devices and the aggregation server. Although federated learning can offer better privacy preservation than centralized machine learning, it has still privacy concerns. In this paper, first, we present the recent advances of federated learning towards enabling federated learning-powered IoT applications. A set of metrics such as sparsification, robustness, quantization, scalability, security, and privacy, is delineated in order to rigorously evaluate the recent advances. Second, we devise a taxonomy for federated learning over IoT networks. Third, we propose two IoT use cases of dispersed federated learning that can offer better privacy preservation than federated learning. Finally, we present several open research challenges with their possible solutions.


翻译:在网络和应用程序管理方面,安装新型机器学习算法(IoT)的时机已经成熟;然而,鉴于存在大量分布和私有的数据集,使用IoT的经典集中学习算法具有挑战性。 为了克服这一挑战,联合会式学习可以是一个很有希望的解决办法,使在设备上学习而不必将私人终端用户数据迁移到中央云层;在联合学习中,只有学习模式更新在终端设备与聚合服务器之间进行。尽管联合学习可以提供更好的隐私保护,但它仍然有隐私问题。在本文中,首先,我们介绍联邦化学习的最新进展,以扶持联邦化学习驱动的IoT应用程序。为了严格评估最近的进展,我们制定了一套衡量标准,例如松散、稳健、静态、静默化、可缩缩缩放、安全和隐私等。第二,我们为在IoT网络上进行联合学习制定了一种开放的分类方法。第三,我们提出使用分散的Feter化学习案例,以分散的Feter化方法学习最终可以提供更好的隐私研究。

1
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Arxiv
11+阅读 · 2021年3月25日
Arxiv
43+阅读 · 2019年12月20日
Advances and Open Problems in Federated Learning
Arxiv
17+阅读 · 2019年12月10日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
相关资讯
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Top
微信扫码咨询专知VIP会员