Historical data from previous clinical trials, observational studies and health records may be utilized in analysis of clinical trials data to strengthen inference. Under the Bayesian framework incorporation of information obtained from any source other than the current data is facilitated through construction of an informative prior. The existing methodology for defining an informative prior based on historical data relies on measuring similarity to the current data at the study level and does not take advantage of individual patient data (IPD). This paper proposes a family of priors that utilize IPD to strengthen statistical inference. It is demonstrated that the proposed prior construction approach outperforms the existing methods where the historical data are partially exchangeable with the present data. The proposed method is applied to IPD from a set of trials in non-small cell lung cancer.


翻译:以往临床试验、观察研究和健康记录的历史数据可用于分析临床试验数据,以加强推论; 根据巴伊西亚框架,通过先建信息资料,便利将从目前数据以外的任何其他来源获得的信息纳入其中; 现有的基于历史数据界定先知信息的方法依靠的是测量研究一级现有数据的相似性,而没有利用个别病人的数据(IPD); 本文提出利用IPD加强统计推论的先行数据组合; 证明拟议的先建方法优于历史数据可部分与现有数据交换的现有方法; 拟议的方法从非小细胞肺癌的一系列试验中适用于IPD。

0
下载
关闭预览

相关内容

数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员