COVID-19 clinical presentation and prognosis are highly variable, ranging from asymptomatic and paucisymptomatic cases to acute respiratory distress syndrome and multi-organ involvement. We developed a hybrid machine learning/deep learning model to classify patients in two outcome categories, non-ICU and ICU (intensive care admission or death), using 558 patients admitted in a northern Italy hospital in February/May of 2020. A fully 3D patient-level CNN classifier on baseline CT images is used as feature extractor. Features extracted, alongside with laboratory and clinical data, are fed for selection in a Boruta algorithm with SHAP game theoretical values. A classifier is built on the reduced feature space using CatBoost gradient boosting algorithm and reaching a probabilistic AUC of 0.949 on holdout test set. The model aims to provide clinical decision support to medical doctors, with the probability score of belonging to an outcome class and with case-based SHAP interpretation of features importance.
翻译:COVID-19临床介绍和预测变化很大,从无症状和缺乏症状的病例到急性呼吸困难综合征和多机参与,我们开发了一个混合机器学习/深学习模型,将病人分为两类结果,非ICU和ICU(密集护理住院或死亡),2020年2月/5月,意大利北部医院收治了558名病人,使用3D级全称有线电视新闻网基线CT图像的3D级有线电视电视分析仪作为特征提取器,除实验室和临床数据外,还用提取的特征与实验室和临床数据一起,用于在带有SHAP游戏理论价值的博鲁塔算法中进行选择,利用CatBoost梯度梯度加速算法在缩小的地貌空间上建立分类器,并在耐久测试装置上达到0.949的概率AUC,目的是向医生提供临床决策支持,其概率分属于结果类,并按个案对SHAP特性的重要性作出解释。