Fast moving but power hungry unmanned aerial vehicles (UAVs) can recharge on slow-moving unmanned ground vehicles (UGVs) to survey large areas in an effective and efficient manner. In order to solve this computationally challenging problem in a reasonable time, we created a two-level optimization heuristics. At the outer level, the UGV route is parameterized by few free parameters and at the inner level, the UAV route is solved by formulating and solving a vehicle routing problem with capacity constraints, time windows, and dropped visits. The UGV free parameters need to be optimized judiciously in order to create high quality solutions. We explore two methods for tuning the free UGV parameters: (1) a genetic algorithm, and (2) Asynchronous Multi-agent architecture (Ateams). The A-teams uses multiple agents to create, improve, and destroy solutions. The parallel asynchronous architecture enables A-teams to quickly optimize the parameters. Our results on test cases show that the A-teams produces similar solutions as genetic algorithm but with a speed up of 2-3 times.
翻译:快速移动但有动力的无人驾驶飞行器(UAVs)可以对移动缓慢的无人驾驶地面飞行器(UGVs)进行充电,以便以有效和高效的方式对大片地区进行勘测。为了在合理的时间内解决这一具有计算挑战性的问题,我们创造了两级优化超热力。在外部一级,UGV路线的参数以少量自由参数为参数,在内部一级,UAV路线通过制定和解决机动车辆路线问题(能力限制、时间窗口和下降访问)来解决。UGV自由参数需要明智地优化,以便创造高质量的解决方案。我们探索了两种方法来调整免费的UGV参数:(1)基因算法和(2)Asynchronous多剂结构(Ateams)。A-teams使用多种物剂来创建、改进和摧毁解决方案。平行的无源结构使A-Teams能够快速优化参数。我们在测试案例上得出的结果表明,A-teams生成的解决方案与遗传算法相似,但速度高达2-3倍。</s>