Model interpretability methods are often used to explain NLP model decisions on tasks such as text classification, where the output space is relatively small. However, when applied to language generation, where the output space often consists of tens of thousands of tokens, these methods are unable to provide informative explanations. Language models must consider various features to predict a token, such as its part of speech, number, tense, or semantics. Existing explanation methods conflate evidence for all these features into a single explanation, which is less interpretable for human understanding. To disentangle the different decisions in language modeling, we focus on explaining language models contrastively: we look for salient input tokens that explain why the model predicted one token instead of another. We demonstrate that contrastive explanations are quantifiably better than non-contrastive explanations in verifying major grammatical phenomena, and that they significantly improve contrastive model simulatability for human observers. We also identify groups of contrastive decisions where the model uses similar evidence, and we are able to characterize what input tokens models use during various language generation decisions.


翻译:模型解释方法通常用于解释关于文本分类等任务的模型决定,因为输出空间相对较小。然而,当应用到语言生成时,当输出空间通常由数万个符号组成时,这些方法无法提供说明性的解释。语言模型必须考虑各种特性来预测符号,例如其语言、数字、时态或语义部分。现有的解释方法将所有这些特征的证据混为一种单一的解释,这种解释性方法对于人类理解而言不那么容易解释。为了分解语言建模中的不同决定,我们侧重于解释语言模型:我们寻找突出的投入符号,解释为什么模型预测一个符号而不是另一个符号。我们表明,对比性解释比核实主要语法现象时的非争议性解释要好得多,而且它们大大改进了人类观察员的对比性模型模拟性。我们还确定了模型使用类似证据的对比性决定组,我们可以辨别各种语言生成决定中使用的输入符号。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
300+阅读 · 2020年11月26日
专知会员服务
44+阅读 · 2020年10月31日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
19+阅读 · 2020年12月23日
Arxiv
19+阅读 · 2018年10月25日
Arxiv
16+阅读 · 2018年2月7日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
300+阅读 · 2020年11月26日
专知会员服务
44+阅读 · 2020年10月31日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员