In the DELETION TO INDUCED MATCHING problem, we are given a graph $G$ on $n$ vertices, $m$ edges and a non-negative integer $k$ and asks whether there exists a set of vertices $S \subseteq V(G) $ such that $|S|\le k$ and the size of any connected component in $G-S$ is exactly 2. In this paper, we provide a fixed-parameter tractable (FPT) algorithm of running time $O^*(1.748^{k})$ for the DELETION TO INDUCED MATCHING problem using branch-and-reduce strategy and path decomposition. We also extend our work to the exact-exponential version of the problem.
翻译:在解决无源分析问题的过程中,我们得到了一张以美元为顶点、美元边缘和非负整数美元为单位的GG美元图,并询问是否存在一套以美元为单位的S = subseteq V(G)美元为单位的V(G)美元顶点,而任何以美元为单位的连接组件的大小恰好是G-S美元。 在本文件中,我们提供了一种以运行时间为单位运行时间的固定参数(FPT)算法,即1美元(1.748美元),用于利用分层和编辑战略和路径分层分解处理问题。 我们还将我们的工作扩展至问题的准确解释版本。