We propose a new globally convergent stochastic second order method. Our starting point is the development of a new Sketched Newton-Raphson (SNR) method for solving large scale nonlinear equations of the form $F(x)=0$ with $F:\mathbb{R}^d \rightarrow \mathbb{R}^n$. We then show how to design several stochastic second order optimization methods by re-writing the optimization problem of interest as a system of nonlinear equations and applying SNR. For instance, by applying SNR to find a stationary point of a generalized linear model (GLM), we derive completely new and scalable stochastic second order methods. We show that the resulting method is very competitive as compared to state-of-the-art variance reduced methods. Furthermore, using a variable splitting trick, we also show that the Stochastic Newton method (SNM) is a special case of SNR, and use this connection to establish the first global convergence theory of SNM. We establish the global convergence of SNR by showing that it is a variant of the stochastic gradient descent (SGD) method, and then leveraging proof techniques of SGD. As a special case, our theory also provides a new global convergence theory for the original Newton-Raphson method under strictly weaker assumptions as compared to the classic monotone convergence theory.
翻译:我们提出一个新的全球趋同的第二顺序方法。 我们的出发点是开发一个新的 Sketched Newton- Raphson (SNR) 方法, 以解决以$F:\\mathbb{R ⁇ d\rightrow \mathbb{R ⁇ n$$美元为单位的大规模非线性方程式。 我们然后展示如何设计几种随机性第二顺序优化方法, 将最佳利益问题重新写成非线性方程式系统, 并应用 SNR。 例如, 应用 SNR 来找到一个通用线性模型(GLM) 的固定点, 我们得出了全新的和可伸缩的第二顺序法的大规模非线性非线性方程式方程式。 我们显示, 由此产生的方法与降低状态的方法相比, 是非常有竞争力的。 此外, 我们用变异的分裂策略, 我们还显示, 托卡式牛顿方法(SNM) 是SNM的第一个全球趋同理论(SNM)下的第一个全球趋同的典型理论, 通过显示一个全球趋同性理论, 将SNBIGGI的新的理论作为新的推。