In this paper, we study the numerical solutions of the multi-dimensional spatial fractional Allen-Cahn equations. After semi-discretization for the spatial fractional Riesz derivative, a system of nonlinear ordinary differential equations with Toeplitz structure is obtained. For the sake of reducing the computational complexity, a two-level Strang splitting method is proposed, where the Toeplitz matrix in the system is split into the sum of a circulant matrix and a skew-circulant matrix. Therefore, the proposed method can be quickly implemented by the fast Fourier transform, substituting to calculate the expensive Toeplitz matrix exponential. Theoretically, the discrete maximum principle of our method is unconditionally preserved. Moreover, the analysis of error in the infinite norm with second-order accuracy is conducted in both time and space. Finally, numerical tests are given to corroborate our theoretical conclusions and the efficiency of the proposed method.
翻译:在本文中,我们研究了多维空间分片Allen-Cahn方程式的数字解决方案。在空间分片Riesz衍生物半分解后,将获得一个带有托普利茨结构的非线性普通差异方程式系统。为了减少计算复杂性,我们建议了两级的斯特拉克分解法,将系统中的托普利茨矩阵分成一个循环矩阵和一个斜体-环球矩阵的总和。因此,拟议的方法可以通过快速的Fourier变换而迅速实施,取代昂贵的托普利茨矩阵指数化。理论上,我们方法的离散最大原则得到无条件保留。此外,对无限规范中的误差的分析在时间和空间上都进行了,最后,进行了数字测试,以证实我们的理论结论和拟议方法的效率。