Deep neural networks are powerful tools for modelling non-linear patterns and are very effective when the input data is homogeneous such as images and texts. In recent years, there have been attempts to apply neural nets to heterogeneous data, such as tabular and multimodal data with mixed categories. Transformation methods, specialised architectures such as hybrid models, and regularisation models are three approaches to applying neural nets to this type of data. In this study, first, we apply K-modes clustering algorithm to define different levels of disability based on responses related to mobility impairments, difficulty in performing Activities of Daily Livings (ADLs), and Instrumental Activities of Daily Livings (IADLs). We consider three cases, namely binary, 3-level, and 4-level disability. We then try Wide & Deep, TabTransformer, and TabNet models to predict these levels using socio-demographic, health, and lifestyle factors. We show that all models predict different levels of disability reasonably well with TabNet outperforming other models in the case of binary disability and in terms of 4 metrics. We also find that factors such as urinary incontinence, ever smoking, exercise, and education are important features selected by TabNet that affect disability.
翻译:暂无翻译