In this paper, we revisit the problem of clustering 1318 new variable stars found in the Milky way. Our recent work distinguishes these stars based on their light curves which are univariate series of brightness from the stars observed at discrete time points. This work proposes a new approach to look at these discrete series as continuous curves over time by transforming them into functional data. Then, functional principal component analysis is performed using these functional light curves. Clustering based on the significant functional principal components reveals two distinct groups of eclipsing binaries with consistency and superiority compared to our previous results. This method is established as a new powerful light curve-based classifier, where implementation of a simple clustering algorithm is effective enough to uncover the true clusters based merely on the first few relevant functional principal components. Simultaneously we discard the noise from the data study involving the higher order functional principal components. Thus the suggested method is very useful for clustering big light curve data sets which is also verified by our simulation study.
翻译:在本文中, 我们重新审视了在 Milky 方式中发现的 1318 个新变量恒星的分组问题。 我们最近的工作根据这些恒星的光曲线, 将这些恒星与在离散时间点观测到的恒星的单独亮度序列区分开来。 这项工作提出了一种新的方法, 通过将这些离散序列转换成功能性数据, 将它们视为连续的曲线。 然后, 使用这些功能性光线曲线进行功能性主要组成部分分析。 基于重要的功能性主要组成部分的分组显示, 与我们先前的结果相比, 有两组不同且具有一致性和优越性的双向双向双向双向双曲线。 这种方法被确定为一个新的强大的光线性曲线分类器, 在那里, 简单组合算法的实施足够有效, 仅根据最初几个相关的功能性主要组成部分来发现真实的组群。 同时, 我们抛弃了涉及更高顺序功能性主要组成部分的数据研究中的噪音。 因此, 所建议的方法对于将大光曲线数据集组合起来非常有用, 并且得到我们的模拟研究的验证 。