This paper presents a game theoretic framework for participation and free-riding in federated learning (FL), and determines the Nash equilibrium strategies when FL is executed over wireless links. To support spectrum sensing for NextG communications, FL is used by clients, namely spectrum sensors with limited training datasets and computation resources, to train a wireless signal classifier while preserving privacy. In FL, a client may be free-riding, i.e., it does not participate in FL model updates, if the computation and transmission cost for FL participation is high, and receives the global model (learned by other clients) without incurring a cost. However, the free-riding behavior may potentially decrease the global accuracy due to lack of contribution to global model learning. This tradeoff leads to a non-cooperative game where each client aims to individually maximize its utility as the difference between the global model accuracy and the cost of FL participation. The Nash equilibrium strategies are derived for free-riding probabilities such that no client can unilaterally increase its utility given the strategies of its opponents remain the same. The free-riding probability increases with the FL participation cost and the number of clients, and a significant optimality gap exists in Nash equilibrium with respect to the joint optimization for all clients. The optimality gap increases with the number of clients and the maximum gap is evaluated as a function of the cost. These results quantify the impact of free-riding on the resilience of FL in NextG networks and indicate operational modes for FL participation.


翻译:本文展示了参与和自由操控联合学习(FL)的游戏理论框架, 并确定了当FL在无线连接中执行FL时的纳什平衡战略。 但是,为了支持对NextG通信的频谱感测,客户使用FL, 即培训有限的培训数据集和计算资源的频谱传感器, 培训无线信号分类器, 并保护隐私。 在FL, 客户可能是自由操控, 即如果FL参与的计算和传输费用高, 客户可能不参加FL模式更新, 并且接受全球模型( 其他客户所学的), 而不产生任何费用。 然而, 自由操控行为可能会降低全球的准确性, 因为它无法对全球模型学习作出贡献。 这种交易导致一种不合作的游戏, 每一个客户都希望通过全球模型准确性和FL参与成本的差别, 来实现无线信号分类参与的成本差异。 纳什平衡战略用于自由操控的概率, 其客户的策略不会单方面增加其效用。 自由操控模式对于FL的最大参与率率的概率随着FL客户的最大参与程度和最大程度的增长而增加。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
10+阅读 · 2021年3月30日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员