While purely data-driven assessment is feasible for the first levels of the Structural Health Monitoring (SHM) process, namely damage detection and arguably damage localization, this does not hold true for more advanced processes. The tasks of damage quantification and eventually residual life prognosis are invariably linked to availability of a representation of the system, which bears physical connotation. In this context, it is often desirable to assimilate data and models, into what is often termed a digital twin of the monitored system. One common take to such an end lies in exploitation of structural mechanics models, relying on use of Finite Element approximations. proper updating of these models, and their incorporation in an inverse problem setting may allow for damage quantification and localization, as well as more advanced tasks, including reliability analysis and fatigue assessment. However, this may only be achieved by means of repetitive analyses of the forward model, which implies considerable computational toll, when the model used is a detailed FE representation. In tackling this issue, reduced order models can be adopted, which retain the parameterisation and link to the parameters regulating the physical properties, albeit greatly reducing the computational burden. In this work a detailed FE model of a wind turbine tower is considered, reduced forms of this model are found using both the Craig Bampton and Dual Craig Bampton methods. These reduced order models are then used and compared in a Transitional Markov Chain Monte Carlo procedure to localise and quantify damage which is introduced to the system.


翻译:虽然纯粹的数据驱动评估对于结构健康监测(SHM)进程的第一阶段是可行的,即损害探测和可以说的损害定位,但对于更先进的过程来说,这种评估并不可行,损害量化和最终残余生命预测的任务总是与系统代表性的可用性相联系,具有物理内涵;在这方面,将数据和模型纳入通常称为监测系统的数码双对,往往可取的做法是将数据和模型纳入监测系统。在解决这一问题时,可以采用简化的订单模型,保留调节物理特性的参数的参数和联系,同时适当更新这些模型,将其纳入反向问题设置可能允许对损害的量化和本地化,以及更高级的任务,包括可靠性分析和疲劳评估。然而,这只能通过对前期模型进行重复分析来实现,这意味着大量计算,当模型是详细的FE代表时,可以采用简化的订单模型,保留调节物理特性的参数,同时大大减轻计算负担。在这项工作中,使用详细的FE过渡性纸质系统模型,然后将采用降低的纸质级标准,然后采用降低标准标准,然后采用降低标准级标准。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
180+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Top
微信扫码咨询专知VIP会员