The ever-growing appearance of infinitely divisible laws and related processes in various areas, such as physics, mathematical biology, finance and economics, has fuelled an increasing demand for numerical methods of sampling and sample path generation. In this survey, we review shot noise representation with a view towards sampling infinitely divisible laws and generating sample paths of related processes. In contrast to many conventional methods, the shot noise approach remains practical even in the multidimensional setting. We provide a brief introduction to shot noise representations of infinitely divisible laws and related processes, and discuss the truncation of such series representations towards the simulation of infinitely divisible random vectors, L\'evy processes, infinitely divisible processes and fields and L\'evy-driven stochastic differential equations. Essential notions and results towards practical implementation are outlined, and summaries of simulation recipes are provided throughout along with numerical illustrations. Some future research directions are highlighted.


翻译:物理、数学生物学、金融和经济学等各个领域中无限分散的法律和相关过程的外观日益明显,这促使对采样和采样路径生成的数字方法的需求日益增加。我们在这次调查中审查了射杀噪音的表示方式,以抽样无限分散的法律和产生相关过程的抽样路径。与许多常规方法不同,射杀噪音方法即使在多维环境中也是实际可行的。我们简要介绍了射杀噪音的射杀噪音表达方式,无限分散的法律和相关过程,并讨论了这种系列表述方式如何支离破碎,用于模拟无限分散的随机矢量、L\'evy过程、无限可视化过程和场以及L\'evy驱动的随机差异方程式。概述了实际实施的基本概念和结果,并随同数字说明一起提供了模拟配方的概要。一些未来的研究方向也得到了强调。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年12月18日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年8月14日
Arxiv
13+阅读 · 2020年8月3日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员