We derive a higher-order asymptotic expansion of the conditional characteristic function of the increment of an It\^o semimartingale over a shrinking time interval. The spot characteristics of the It\^o semimartingale are allowed to have dynamics of general form. In particular, their paths can be rough, that is, exhibit local behavior like that of a fractional Brownian motion, while at the same time have jumps with arbitrary degree of activity. The expansion result shows the distinct roles played by the different features of the spot characteristics dynamics. As an application of our result, we construct a nonparametric estimator of the Hurst parameter of the diffusive volatility process from portfolios of short-dated options written on an underlying asset.
翻译:我们得出了It ⁇ o半martingale在缩短时间间隔内递增的有条件特征功能更高层次的无症状扩展。 允许It ⁇ o半martingale的点特征具有一般形式的动态。 特别是, 它们的路径可能粗糙, 也就是说, 展示出像一个分数的布朗运动那样的局部行为, 而与此同时, 却有任意的跳跃 。 扩展结果显示了点特征动态的不同特征所起的不同作用 。 作为我们结果的一种应用, 我们从写在基本资产上的短时间选项组合中, 建立一个非参数性强力波动过程赫斯特参数的参数非参数测量符 。