The Machine Learning for Combinatorial Optimization (ML4CO) NeurIPS 2021 competition aims to improve state-of-the-art combinatorial optimization solvers by replacing key heuristic components with machine learning models. On the dual task, we design models to make branching decisions to promote the dual bound increase faster. We propose a knowledge inheritance method to generalize knowledge of different models from the dataset aggregation process, named KIDA. Our improvement overcomes some defects of the baseline graph-neural-networks-based methods. Further, we won the $1$\textsuperscript{st} Place on the dual task. We hope this report can provide useful experience for developers and researchers. The code is available at https://github.com/megvii-research/NeurIPS2021-ML4CO-KIDA.
翻译:NeurIPS 2021 年竞争联合优化机器学习(ML4CO) NeurIPS 2021 年的竞赛旨在通过用机器学习模型取代关键的超光速组件来改进最先进的组合优化解决方案。关于双重任务,我们设计了模式,以便作出分支决定,促进双重约束增长更快。我们提议了一种知识继承方法,以普及对数据集汇总过程不同模型的知识,名为KIDA。我们的改进克服了基于基准图形-神经网络方法的一些缺陷。此外,我们赢得了有关双重任务的$$1\ textsuperscript{st} 地方。我们希望这份报告能够为开发者和研究人员提供有用的经验。代码可在https://github.com/megving-research/NeurIPS2021-ML4CO-KIDA上查阅。