Brain-computer interface (BCI) is used for communication between humans and devices by recognizing status and intention of humans. Communication between humans and a drone using electroencephalogram (EEG) signals is one of the most challenging issues in the BCI domain. In particular, the control of drone swarms (the direction and formation) has more advantages compared to the control of a drone. The visual imagery (VI) paradigm is that subjects visually imagine specific objects or scenes. Reduction of the variability among EEG signals of subjects is essential for practical BCI-based systems. In this study, we proposed the subepoch-wise feature encoder (SEFE) to improve the performances in the subject-independent tasks by using the VI dataset. This study is the first attempt to demonstrate the possibility of generalization among subjects in the VI-based BCI. We used the leave-one-subject-out cross-validation for evaluating the performances. We obtained higher performances when including our proposed module than excluding our proposed module. The DeepConvNet with SEFE showed the highest performance of 0.72 among six different decoding models. Hence, we demonstrated the feasibility of decoding the VI dataset in the subject-independent task with robust performances by using our proposed module.
翻译:人与装置之间的通信使用大脑-计算机接口(BCI),通过确认人类的地位和意图,用于人与装置之间的通信。人与使用电脑图信号的无人驾驶飞机之间的通信是BCI域中最具挑战性的问题之一。特别是,控制无人机群(方向和形成)比控制无人驾驶飞机更具有优势。视觉图像(VI)范例是,对象视觉想象特定物体或场景。减少EEEEG对象信号的变异性对于实用的 BCI 系统至关重要。在本研究中,我们建议使用电脑图信号(EEEEG),以改进在独立主题任务中的性能。这一研究是首次尝试表明在基于VI CI 的主体之间实现普遍性的可能性(方向和形成)。我们使用左侧交叉验证来评价性能。我们把拟议模块包括在内,而不是排除我们提议的模块,我们获得了更高的性能。与SEVEFE显示在六个不同任务独立的模型中最高级的性能。我们用VI演示了我们的拟议性能分析模型展示了六号。