Recently, Baltag and van Benthem introduced a decidable logic of functional dependence (LFD) that extends the logic of Cylindrical Relativized Set Algebras (CRS) with atomic local dependence statements. Its semantics can be given in terms of generalised assignment models or their modal counterparts, hence the logic is both a first-order and a modal logic. We show that LFD has the finite model property (FMP) using Herwig's theorem on extending partial isomorphisms, and prove a bisimulation invariance theorem characterizing LFD as a fragment of first-order logic.
翻译:最近,巴尔塔格和范本特姆引入了一种可分解的功能依赖逻辑(LFD),将Cylindrical Contalized Set 代数(CRS)的逻辑与当地原子依赖性声明相延伸,其语义可以用一般分配模式或其模式对应方来表示,因此逻辑既是一种第一阶,也是一种模式逻辑。我们表明,LFD具有有限的模型属性(FMP ), 使用Herwig的理论来扩展部分非无貌主义, 并证明LFD是第一级逻辑的碎片, 其词义是变异的, 并证明它具有平衡性。