Finding the ground state energy of the Heisenberg Hamiltonian is an important problem in the field of condensed matter physics. In some configurations, such as the antiferromagnetic translationally-invariant case on the 2D square lattice, its exact ground state energy is still unknown. We show that finding the ground state energy of the Heisenberg model cannot be an NP-Hard problem unless P=NP. We prove this result using a reduction to a sparse set and certain theorems from computational complexity theory. The result hints at the potential tractability of the problem and encourages further research towards a positive complexity result. In addition, we prove similar results for many similarly structured Hamiltonian problems, including certain forms of the Ising, t-J, and Fermi-Hubbard models.
翻译:寻找海森堡汉密尔顿的地面状态能量是精密物质物理学领域的一个重要问题。 在一些配置中,例如2D广场的反地磁变异体,其确切的地面状态能量仍然未知。 我们表明,找到海森堡模型的地面状态能量,除非P=NP,否则不可能是一个NP-Hard问题。我们用计算复杂性理论的稀薄和某些理论来证明这一结果。结果暗示了问题的潜在可感性,并鼓励进一步开展研究,以取得积极的复杂性结果。此外,我们证明许多类似结构的汉密尔顿问题也有类似的结果,包括某些形式的Ising、T-J和Fermi-Hubbbard模型。