Standardized body region labelling of individual images provides data that can improve human and computer use of medical images. A CNN-based classifier was developed to identify body regions in CT and MRI. 17 CT (18 MRI) body regions covering the entire human body were defined for the classification task. Three retrospective databases were built for the AI model training, validation, and testing, with a balanced distribution of studies per body region. The test databases originated from a different healthcare network. Accuracy, recall and precision of the classifier was evaluated for patient age, patient gender, institution, scanner manufacturer, contrast, slice thickness, MRI sequence, and CT kernel. The data included a retrospective cohort of 2,934 anonymized CT cases (training: 1,804 studies, validation: 602 studies, test: 528 studies) and 3,185 anonymized MRI cases (training: 1,911 studies, validation: 636 studies, test: 638 studies). 27 institutions from primary care hospitals, community hospitals and imaging centers contributed to the test datasets. The data included cases of all genders in equal proportions and subjects aged from a few months old to +90 years old. An image-level prediction accuracy of 91.9% (90.2 - 92.1) for CT, and 94.2% (92.0 - 95.6) for MRI was achieved. The classification results were robust across all body regions and confounding factors. Due to limited data, performance results for subjects under 10 years-old could not be reliably evaluated. We show that deep learning models can classify CT and MRI images by body region including lower and upper extremities with high accuracy.
翻译:个人图像标准化体格标签提供了可以改进人体和计算机医疗图像使用的数据; 开发了一个CNN的分类器,以确定CT和MRI的人体区域; 为分类任务确定了覆盖整个人体的17个CT(18MRI)机构区域; 为AI模型培训、验证和测试建立了三个追溯数据库,每个机构区域的研究分布均衡; 测试数据库来自不同的保健网络; 对病人年龄、病人性别、机构、扫描机制造商、对比、切片厚度、MRI序列和CT内核的分类器进行了准确、回顾和精确性评价; 数据包括2 934个匿名CT案例的追溯组(培训:1 804项研究、验证:602项研究、测试:528项研究)和3 185个匿名MRI案例(培训:1 911项研究、验证:636项研究、测试:638项研究)。 初级护理医院、社区医院和成像中心27个机构对测试数据集进行了准确性评估; 数据包括:92%以上的性别比例和科目的追溯性案例; 95年的高级和90个高等级数据序列,显示为91至90区域。