How do spaces emerge from pregeometric discrete building blocks governed by computational rules? To address this, we investigate non-deterministic rewriting systems (multiway systems) of the Wolfram model. We express these rewriting systems as homotopy types. Using this new formulation, we outline how spatial structures can be functorially inherited from pregeometric type-theoretic constructions. We show how higher homotopy types are constructed from rewriting rules. These correspond to morphisms of an $n$-fold category. Subsequently, the $n \to \infty$ limit of the Wolfram model rulial multiway system is identified as an $\infty$-groupoid, with the latter being relevant given Grothendieck's homotopy hypothesis. We then go on to show how this construction extends to the classifying space of rulial multiway systems, which forms a multiverse of multiway systems and carries the formal structure of an ${\left(\infty, 1\right)}$-topos. This correspondence to higher categorical structures offers a new way to understand how spaces relevant to physics may arise from pregeometric combinatorial models. A key issue we have addressed here is to relate abstract non-deterministic rewriting systems to higher homotopy spaces. A consequence of constructing spaces and geometry synthetically is that it eliminates ad hoc assumptions about geometric attributes of a model such as an a priori background or pre-assigned geometric data. Instead, geometry is inherited functorially by higher structures. This is relevant for formally justifying different choices of underlying spacetime discretization adopted by models of quantum gravity. We conclude with comments on how our framework of higher category-theoretic combinatorial constructions, corroborates with other approaches investigating higher categorical structures relevant to the foundations of physics.


翻译:为了解决这个问题,我们调查沃尔夫拉姆模型的非确定性重写系统(多路系统),我们将这些重写系统作为同质类型表达。使用这一新公式,我们概述了空间结构如何从远地分解类型理论构造中传承。我们展示了如何从重写规则中构建更高的同质性类型。这与一个美元-双倍的直径空间类别的形态相对应。随后,我们调查了沃尔夫拉姆模型多路系统(多路系统)的非确定性重写系统(多路系统)的美元-直径结构的较高结构(多路规则)的较高结构。随后,Wolfram模型(多路系统)的美元-高端重写性重写系统(多路系统)的较高结构(多路系统)与一个美元-直径空空间结构的更迭变异性结构。这个更高级的直径直径直径直径结构的相对比对一个更高级直径直径结构的直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径结构结构结构结构结构结构结构结构结构结构结构的直径直径直径直径直径直径直径直径直径直向, 结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构的直径直径直径直径直向,从一个直到一个新的直直直直直直直直直直直直直到一个直直直直直直直直直直直直直直直直直向,直直直至直至直至直至直至直至直至直至直直直直直直至直至直至直直直直直直直直直直至直至直至直直直直直至直至直至直直直直直直直直直直直直至直直直直直直至直直直直至直直至直至直至直直直直至直直直直直直直至直至直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直至直至直

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【干货书】机器学习算法视角,249页pdf
专知会员服务
142+阅读 · 2021年10月18日
Python编程基础,121页ppt
专知会员服务
48+阅读 · 2021年1月1日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
7+阅读 · 2017年7月11日
Arxiv
0+阅读 · 2022年1月24日
VIP会员
相关资讯
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
7+阅读 · 2017年7月11日
Top
微信扫码咨询专知VIP会员