How do spaces emerge from pregeometric discrete building blocks governed by computational rules? To address this, we investigate non-deterministic rewriting systems (multiway systems) of the Wolfram model. We express these rewriting systems as homotopy types. Using this new formulation, we outline how spatial structures can be functorially inherited from pregeometric type-theoretic constructions. We show how higher homotopy types are constructed from rewriting rules. These correspond to morphisms of an $n$-fold category. Subsequently, the $n \to \infty$ limit of the Wolfram model rulial multiway system is identified as an $\infty$-groupoid, with the latter being relevant given Grothendieck's homotopy hypothesis. We then go on to show how this construction extends to the classifying space of rulial multiway systems, which forms a multiverse of multiway systems and carries the formal structure of an ${\left(\infty, 1\right)}$-topos. This correspondence to higher categorical structures offers a new way to understand how spaces relevant to physics may arise from pregeometric combinatorial models. A key issue we have addressed here is to relate abstract non-deterministic rewriting systems to higher homotopy spaces. A consequence of constructing spaces and geometry synthetically is that it eliminates ad hoc assumptions about geometric attributes of a model such as an a priori background or pre-assigned geometric data. Instead, geometry is inherited functorially by higher structures. This is relevant for formally justifying different choices of underlying spacetime discretization adopted by models of quantum gravity. We conclude with comments on how our framework of higher category-theoretic combinatorial constructions, corroborates with other approaches investigating higher categorical structures relevant to the foundations of physics.
翻译:为了解决这个问题,我们调查沃尔夫拉姆模型的非确定性重写系统(多路系统),我们将这些重写系统作为同质类型表达。使用这一新公式,我们概述了空间结构如何从远地分解类型理论构造中传承。我们展示了如何从重写规则中构建更高的同质性类型。这与一个美元-双倍的直径空间类别的形态相对应。随后,我们调查了沃尔夫拉姆模型多路系统(多路系统)的非确定性重写系统(多路系统)的美元-直径结构的较高结构(多路规则)的较高结构。随后,Wolfram模型(多路系统)的美元-高端重写性重写系统(多路系统)的较高结构(多路系统)与一个美元-直径空空间结构的更迭变异性结构。这个更高级的直径直径直径直径结构的相对比对一个更高级直径直径结构的直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径结构结构结构结构结构结构结构结构结构结构结构的直径直径直径直径直径直径直径直径直径直向, 结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构的直径直径直径直径直向,从一个直到一个新的直直直直直直直直直直直直直到一个直直直直直直直直直直直直直直直直直向,直直直至直至直至直至直至直至直至直至直直直直直直至直至直至直直直直直直直直直直至直至直至直直直直直至直至直至直直直直直直直直直直直直至直直直直直直至直直直直至直直至直至直至直直直直至直直直直直直直至直至直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直至直至直