For $0 \leq k \leq 6$, we give the minimum number of vertices $f(k)$ in a graph containing all $k$-vertex graphs as induced subgraphs, and show that $16 \leq f(7) \leq 18$. For $0 \leq k \leq 5$, we also give the counts of such graphs, as generated by brute-force computer search. We give additional results for small graphs containing all trees on $k$ vertices.
翻译:对于 $0 leq k\leq 6 美元,我们在一个包含所有 $k$- verdex 图表的图表中给出最小的顶点数 $f(k)$, 并显示 $16\leq f(7)\leq 18 美元。对于 $0\leq k\leq 5 美元, 我们给出这些图表的计数, 如由粗力计算机搜索生成的。 我们对包含所有树的小图表以 $k$ 的顶点为额外结果 。