Measures of Activity of Daily Living (ADL) are an important indicator of overall health but difficult to measure in-clinic. Automated and accurate human activity recognition (HAR) using wrist-worn accelerometers enables practical and cost efficient remote monitoring of ADL. Key obstacles in developing high quality HAR is the lack of large labeled datasets and the performance loss when applying models trained on small curated datasets to the continuous stream of heterogeneous data in real-life. In this work we design a self-supervised learning paradigm to create a robust representation of accelerometer data that can generalize across devices and subjects. We demonstrate that this representation can separate activities of daily living and achieve strong HAR accuracy (on multiple benchmark datasets) using very few labels. We also propose a segmentation algorithm which can identify segments of salient activity and boost HAR accuracy on continuous real-life data.
翻译:利用手腕式加速度计进行自动和准确的人类活动识别(HAR),可以对ADL进行实际和成本效益高的远程监测。 开发高质量HAR的主要障碍是缺乏大标记数据集,在应用小缩放数据集模型对现实生活中的多种数据连续流进行分类时,性能损失。在这项工作中,我们设计了一种自我监督的学习模式,以形成一种可跨越各种装置和主题的强力加速计数据代表制。我们证明这种表示制可以将日常生活活动分开,用极少的标签(多基准数据集)实现强度的HAR准确性。我们还提议了一种分解算法,可以确定显著活动的各个部分,提高持续实际生命数据的准确性。