Extreme environmental events frequently exhibit spatial and temporal dependence. These data are often modeled using max stable processes (MSPs). MSPs are computationally prohibitive to fit for as few as a dozen observations, with supposed computationally-efficient approaches like the composite likelihood remaining computationally burdensome with a few hundred observations. In this paper, we propose a spatial partitioning approach based on local modeling of subsets of the spatial domain that delivers computationally and statistically efficient inference. Marginal and dependence parameters of the MSP are estimated locally on subsets of observations using censored pairwise composite likelihood, and combined using a modified generalized method of moments procedure. The proposed distributed approach is extended to estimate spatially varying coefficient models to deliver computationally efficient modeling of spatial variation in marginal parameters. We demonstrate consistency and asymptotic normality of estimators, and show empirically that our approach leads to a surprising reduction in bias of parameter estimates over a full data approach. We illustrate the flexibility and practicability of our approach through simulations and the analysis of streamflow data from the U.S. Geological Survey.


翻译:极端环境事件往往表现出空间和时间依赖性。这些数据往往使用最稳定的过程(MSPs)来模拟。MSPs的模型在计算上令人望而却步。MSPs在计算上令人望而却步,无法适应十几次观测,其假设的计算效率高的方法,如综合可能性在计算上仍然累赘。在本文件中,我们提议以对空间域中提供计算和统计上高效推导的子集模型为基础的空间分割方法。MSP的边际和依赖性参数是在当地使用经过审查的双对组合可能性的观察子集估计,并使用经过修改的瞬间程序通用方法加以合并。拟议的分布法将扩大至对空间变化系数模型的估计,以提供边际参数空间变化的计算效率模型。我们展示了估计者的一致性和无差别的正常性,并从经验上表明,我们的方法导致对全数据方法的参数估计偏差导致令人惊讶地减少。我们的方法通过模拟和分析美国地质调查的流数据来说明其灵活性和可行性。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月16日
Arxiv
38+阅读 · 2021年8月31日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员