Large language models (LLMs) provide a new way to build chatbots by accepting natural language prompts. Yet, it is unclear how to design prompts to power chatbots to carry on naturalistic conversations while pursuing a given goal, such as collecting self-report data from users. We explore what design factors of prompts can help steer chatbots to talk naturally and collect data reliably. To this aim, we formulated four prompt designs with different structures and personas. Through an online study (N = 48) where participants conversed with chatbots driven by different designs of prompts, we assessed how prompt designs and conversation topics affected the conversation flows and users' perceptions of chatbots. Our chatbots covered 79% of the desired information slots during conversations, and the designs of prompts and topics significantly influenced the conversation flows and the data collection performance. We discuss the opportunities and challenges of building chatbots with LLMs.
翻译:大型语言模型(LLMs)通过接受自然语言提示,为建立聊天室提供了一种新的方式。然而,尚不清楚如何设计出能让聊天室在追求特定目标的同时进行自然对话的动力,例如收集用户的自我报告数据。我们探讨了什么设计因素可以帮助聊天室引导聊天室进行自然交谈并可靠地收集数据。为此,我们设计了不同结构和人的四种快速设计。通过在线研究(N=48),参与者与不同热点设计驱动的聊天室进行交谈,我们评估了迅速设计和对话话题如何影响对话流和用户对聊天室的看法。我们的聊天室覆盖了79%的对话中理想信息区,以及快速和专题的设计极大地影响了对话流和数据收集的绩效。我们讨论了与LMS建立聊天室的机会和挑战。