Consider a multiple hypothesis testing setting involving rare/weak features: only few features, out of possibly many, deviate from their null hypothesis behavior. Summarizing the significance of each feature by a P-value, we construct a global test against the null using the Higher Criticism (HC) statistics of these P-values. We calibrate the rare/weak model using parameters controlling the asymptotic behavior of these P-values in their near-zero "tail". We derive a region in the parameter space where the HC test is asymptotically powerless. Our derivation involves very different tools than previously used to show the powerlessness of HC, relying on properties of the empirical processes underlying HC. In particular, our result applies to situations where HC is not asymptotically optimal, or when the asymptotically detectable region of the parameter space is unknown.
翻译:考虑一个包含稀有/ 弱点特征的多重假设测试设置: 只有少数特征, 可能有许多特征, 偏离其无效的假设行为。 以P值来概括每个特征的重要性, 我们用这些P值的高级批评性( HC) 统计数据构建了对空体的全球测试。 我们使用控制这些P值在近零“ 尾点” 中的无症状行为的参数校准了稀有/ 弱点模型。 我们从参数空间中得出一个区域, 该区域 HC 测试在瞬间无能性。 我们的衍生过程所涉及的工具与以前用来显示 HC 无能的工具非常不同, 依赖HC 基础的经验性过程的特性。 特别是, 我们的结果适用于HC 不具有无症状性最佳性的情况, 或者当参数空间的无症状可探测区域未知时。