Spiking Neural Networks (SNNs) compute and communicate with asynchronous binary temporal events that can lead to significant energy savings with neuromorphic hardware. Recent algorithmic efforts on training SNNs have shown competitive performance on a variety of classification tasks. However, a visualization tool for analysing and explaining the internal spike behavior of such temporal deep SNNs has not been explored. In this paper, we propose a new concept of bio-plausible visualization for SNNs, called Spike Activation Map (SAM). The proposed SAM circumvents the non-differentiable characteristic of spiking neurons by eliminating the need for calculating gradients to obtain visual explanations. Instead, SAM calculates a temporal visualization map by forward propagating input spikes over different time-steps. SAM yields an attention map corresponding to each time-step of input data by highlighting neurons with short inter-spike interval activity. Interestingly, without both the backpropagation process and the class label, SAM highlights the discriminative region of the image while capturing fine-grained details. With SAM, for the first time, we provide a comprehensive analysis on how internal spikes work in various SNN training configurations depending on optimization types, leak behavior, as well as when faced with adversarial examples.
翻译:Spik Neural 网络( SNNS) 计算并和无同步的二进制时间事件进行交流,这些现象可以导致神经变异硬件节省大量能量。最近关于培训SNNS的算法工作在各种分类任务中表现出了竞争性表现。然而,尚未探索一个用于分析和解释这种时间深层 SNNS 内部激增行为的视觉化工具。在本文中,我们提出了一个新的SNNS生物可视化概念,称为Spik Activatation Map(SAM)。拟议的SAM通过消除计算梯度以获得视觉解释的必要性,绕过Spising神经神经元的非可区分特性。相反,SAM通过前向前推推推输入输入速度在不同的时间段上跳动,计算出一个时间可视化图。SAM产生一个与输入数据每个时间段相对应的注意地图,通过短期间间隔活动来突出神经元。 有趣的是,不作后推解过程和类标签,SAM强调图像的区别区域,同时捕捉取精度细节以获得视觉解释解释解释。SAM,作为Simprill imal imalimalact imact ex ex ex ex ex ex imact ex ex ex ex eximpactly ex ex ex eximpact ex ex exact ex ex ex ex ex ex ex ex exview ex ex expract expract ex ex ex ex expract exact expractly ex ex ex ex exact ex ex exact ex exact exact exgipeal exacts ex ex extipeal expractly exvipeal ex ex ex ex ex ex ex ex ex ex ex ex expractal ex ex ex ex ex ex