Spiking Neural Networks (SNNs) compute and communicate with asynchronous binary temporal events that can lead to significant energy savings with neuromorphic hardware. Recent algorithmic efforts on training SNNs have shown competitive performance on a variety of classification tasks. However, a visualization tool for analysing and explaining the internal spike behavior of such temporal deep SNNs has not been explored. In this paper, we propose a new concept of bio-plausible visualization for SNNs, called Spike Activation Map (SAM). The proposed SAM circumvents the non-differentiable characteristic of spiking neurons by eliminating the need for calculating gradients to obtain visual explanations. Instead, SAM calculates a temporal visualization map by forward propagating input spikes over different time-steps. SAM yields an attention map corresponding to each time-step of input data by highlighting neurons with short inter-spike interval activity. Interestingly, without both the backpropagation process and the class label, SAM highlights the discriminative region of the image while capturing fine-grained details. With SAM, for the first time, we provide a comprehensive analysis on how internal spikes work in various SNN training configurations depending on optimization types, leak behavior, as well as when faced with adversarial examples.


翻译:Spik Neural 网络( SNNS) 计算并和无同步的二进制时间事件进行交流,这些现象可以导致神经变异硬件节省大量能量。最近关于培训SNNS的算法工作在各种分类任务中表现出了竞争性表现。然而,尚未探索一个用于分析和解释这种时间深层 SNNS 内部激增行为的视觉化工具。在本文中,我们提出了一个新的SNNS生物可视化概念,称为Spik Activatation Map(SAM)。拟议的SAM通过消除计算梯度以获得视觉解释的必要性,绕过Spising神经神经元的非可区分特性。相反,SAM通过前向前推推推输入输入速度在不同的时间段上跳动,计算出一个时间可视化图。SAM产生一个与输入数据每个时间段相对应的注意地图,通过短期间间隔活动来突出神经元。 有趣的是,不作后推解过程和类标签,SAM强调图像的区别区域,同时捕捉取精度细节以获得视觉解释解释解释。SAM,作为Simprill imal imalimalact imact ex ex ex ex ex ex imact ex ex ex ex eximpactly ex ex ex eximpact ex ex exact ex ex ex ex ex ex ex ex exview ex ex expract expract ex ex ex ex expract exact expractly ex ex ex ex exact ex ex exact ex exact exact exgipeal exacts ex ex extipeal expractly exvipeal ex ex ex ex ex ex ex ex ex ex ex ex expractal ex ex ex ex ex ex

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
专知会员服务
26+阅读 · 2021年4月2日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年5月19日
Arxiv
0+阅读 · 2021年5月18日
Arxiv
6+阅读 · 2019年7月29日
Arxiv
16+阅读 · 2018年2月7日
Arxiv
7+阅读 · 2017年12月28日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员