Network utility maximization (NUM) is a general framework for designing distributed optimization algorithms for large-scale networks. An economic challenge arises in the presence of strategic agents' private information. Existing studies proposed (economic) mechanisms but largely neglected the issue of large-scale implementation. Specifically, they require certain modifications to the deployed algorithms, which may bring the significant cost. To tackle this challenge, we present the large-scale Vickery-Clark-Grove (VCG) Mechanism for NUM, with a simpler payment rule characterized by the shadow prices. The Large-Scale VCG Mechanism maximizes the network utility and achieves individual rationality and budget balance. With infinitely many agents, agents' truthful reports of their types are their dominant strategies; for the finite case, each agent's incentive to misreport converges quadratically to zero. For practical implementation, we introduce a modified mechanism that possesses an additional important technical property, superimposability, which makes it able to be built upon any (potentially distributed) algorithm that optimally solves the NUM Problem and ensures all agents to obey the algorithm. We then extend this idea to the dynamic case, when agents' types are dynamically evolving as a controlled Markov process. In this case, the mechanism leads to incentive compatible actions of agent for each time slot.


翻译:网络效用最大化(NUM)是设计大规模网络分布优化算法的一般框架,在战略代理人的私人信息面前产生一项经济挑战。现有的研究提议(经济)机制,但基本上忽视了大规模实施的问题。具体地说,它们要求对部署算法作某些修改,这可能带来巨大的成本。为了应对这一挑战,我们为NUM提出大规模VCG机制,以影子价格为特点的更简单的支付规则。大型VCG机制最大限度地利用网络效用,实现个人合理性和预算平衡。由于无穷无尽的代理商,其类型的真实报告是其主导战略;对于有限的情况,每个代理商误报的动机会四重而成零。为了实际实施,我们引入一个经过修改的机制,拥有额外的重要技术属性,即超强性,它能够建立在任何(可能分布的)算法上,最优化地解决NUM问题,并确保所有代理商都遵守算法。我们随后将这一想法扩大到每个动态代理商的动态行为模式。

0
下载
关闭预览

相关内容

【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
40+阅读 · 2020年7月23日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月6日
Arxiv
8+阅读 · 2018年7月12日
Arxiv
5+阅读 · 2018年5月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员