Off-policy prediction -- learning the value function for one policy from data generated while following another policy -- is one of the most challenging subproblems in reinforcement learning. This paper presents empirical results with eleven prominent off-policy learning algorithms that use linear function approximation: five Gradient-TD methods, two Emphatic-TD methods, Off-policy TD($\lambda$), Vtrace, and versions of Tree Backup and ABQ modified to apply to a prediction setting. Our experiments used the Collision task, a small idealized off-policy problem analogous to that of an autonomous car trying to predict whether it will collide with an obstacle. We assessed the performance of the algorithms according to their learning rate, asymptotic error level, and sensitivity to step-size and bootstrapping parameters. By these measures, the eleven algorithms can be partially ordered on the Collision task. In the top tier, the two Emphatic-TD algorithms learned the fastest, reached the lowest errors, and were robust to parameter settings. In the middle tier, the five Gradient-TD algorithms and Off-policy TD($\lambda$) were more sensitive to the bootstrapping parameter. The bottom tier comprised Vtrace, Tree Backup, and ABQ; these algorithms were no faster and had higher asymptotic error than the others. Our results are definitive for this task, though of course experiments with more tasks are needed before an overall assessment of the algorithms' merits can be made.


翻译:离政策预测 -- -- 从生成的数据中学习一项政策的价值函数,同时遵循另一项政策 -- -- 是强化学习中最具挑战性的子问题之一。本文件介绍了11种著名的非政策学习算法的经验结果,这些算法使用线性函数近似值:五种梯度-TD方法、两种Empphatic-TD方法、两种Empphatic-TD方法、脱政策TD($\lambda$)、Vtrace,以及经修改的树备份和ABQ版本,以适用于预测设置。我们的实验使用了碰撞任务,一个小的离政策问题理想化了,类似于一个自主汽车试图预测它是否会与障碍相撞。我们在中层,五个梯度-TD算法和脱轨算法的性能与其学习速度、无症状差差差差差、对级和踢踏参数的敏感性。根据这些措施,11种算法算法可以部分地适用于校正任务。在顶端一级,两种Empat-TD算法可以比下级更快速、最接近于参数设置。在中层一级,五个梯级的算法算算法和最高级的轨算算算法是更精度。在Atlexxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
11+阅读 · 2019年4月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
13+阅读 · 2020年4月12日
Arxiv
9+阅读 · 2019年4月19日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
11+阅读 · 2019年4月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员