Giving a convincing experimental evidence of the quantum supremacy over classical simulations is a challenging goal. Noise is considered to be the main problem in such a demonstration, hence it is urgent to understand the effect of noise. Recently found classical algorithms can efficiently approximate, to any small error, the output of boson sampling with finite-amplitude noise. In this work it is shown analytically and confirmed by numerical simulations that one can efficiently distinguish the output distribution of such a noisy boson sampling from the approximations accounting for low-order quantum multiboson interferences, what includes the mentioned classical algorithms. The number of samples required to tell apart the quantum and classical output distributions is strongly affected by the previously unexplored parameter: density of bosons, i.e., the ratio of total number of interfering bosons to number of input ports of interferometer. Such critical dependence is strikingly reminiscent of the quantum-to-classical transition in systems of identical particles, which sets in when the system size scales up while density of particles vanishes.
翻译:给出量子优于经典模拟的令人信服的实验性证据是一个具有挑战性的目标。 噪音被认为是这种演示中的主要问题, 因此迫切需要理解噪音的影响。 最近发现的古典算法可以有效地与任何小差错相近, 使用有限光度噪声进行boson抽样的输出。 在这项工作中, 分析并用数字模拟证实, 人们可以有效地区分这种吵闹的boson抽样的输出分布与计算低级量子多波子干扰的近似值, 包括上述古典算法。 需要多少样本来分辨量子和经典产出分布, 受先前尚未探讨的参数的严重影响: bosons的密度, 即干扰bosons的总数与内光度计输入端数的比率。 这种关键依赖性惊人地使人想起了相同粒子系统中的量子- 级转变, 它在粒子消失密度的同时系统规模上升时, 也设定了系统大小的量子- 向级转变。