Let $\mathbf{W}\in\mathbb{C}^{n\times n}$ be a {\it single-spiked} Wishart matrix in the class $\mathbf{W}\sim \mathcal{CW}_n(m,\mathbf{I}_n+ \theta \mathbf{v}\mathbf{v}^\dagger) $ with $m\geq n$, where $\mathbf{I}_n$ is the $n\times n$ identity matrix, $\mathbf{v}\in\mathbb{C}^{n\times 1}$ is an arbitrary vector with unit Euclidean norm, $\theta\geq 0$ is a non-random parameter, and $(\cdot)^\dagger$ represents the conjugate-transpose operator. Let $\mathbf{u}_1$ and $\mathbf{u}_n$ denote the eigenvectors corresponding to the samllest and the largest eigenvalues of $\mathbf{W}$, respectively. This paper investigates the probability density function (p.d.f.) of the random quantity $Z_{\ell}^{(n)}=\left|\mathbf{v}^\dagger\mathbf{u}_\ell\right|^2\in(0,1)$ for $\ell=1,n$. In particular, we derive a finite dimensional closed-form p.d.f. for $Z_{1}^{(n)}$ which is amenable to asymptotic analysis as $m,n$ diverges with $m-n$ fixed. It turns out that, in this asymptotic regime, the scaled random variable $nZ_{1}^{(n)}$ converges in distribution to $\chi^2_2/2(1+\theta)$, where $\chi_2^2$ denotes a chi-squared random variable with two degrees of freedom. This reveals that $\mathbf{u}_1$ can be used to infer information about the spike. On the other hand, the finite dimensional p.d.f. of $Z_{n}^{(n)}$ is expressed as a double integral in which the integrand contains a determinant of a square matrix of dimension $(n-2)$. Although a simple solution to this double integral seems intractable, for special configurations of $n=2,3$, and $4$, we obtain closed-form expressions.


翻译:Let\ mathbf{W} 以 $\ geq n$, 其中 $\ mathb{CQ} 以美元=美元=美元=美元=美元=美元=美元=美元; 以美元=美元=美元=美元=美元=美元=美元; 以美元=美元=美元=美元=美元=美元=美元=美元; 以美元=美元=美元=美元=美元=美元=美元=美元=美元; 以美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=货币=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元= 以美元=美元=美元=美元=美元=美元=美元=美元=美元=

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
【硬核书】矩阵代数基础,248页pdf
专知会员服务
85+阅读 · 2021年12月9日
专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
已删除
将门创投
11+阅读 · 2019年4月26日
Arxiv
0+阅读 · 2021年12月21日
VIP会员
相关VIP内容
【硬核书】矩阵代数基础,248页pdf
专知会员服务
85+阅读 · 2021年12月9日
专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
11+阅读 · 2019年4月26日
Top
微信扫码咨询专知VIP会员