The multiscale simulation of heterogeneous materials is a popular and important subject in solid mechanics and materials science due to the wide application of composite materials. However, the classical FE2 (finite element2) scheme can be costly, especially when the microproblem is nonlinear. In this paper, we consider the case when the microproblem is the phase field formulation for fracture. We adopt the locally linear embedding (LLE) manifold learning approach, a method for non-linear dimension reduction, to extract the manifold that contains a collection of phase-field-represented initial microcrack patterns in the representative volume element (RVE). Then the output data corresponding to any other microcrack pattern, e.g., the evolved phase field at a fixed load, can be accurately reconstructed using the learned manifold with minimum computation. The method has two features: a minimum number of parameters for the scheme, and an input-specific error bar. The latter feature enables an adaptive strategy for any new input on whether to use the proposed, less expensive reconstruction, or to use an accurate but costly high-fidelity computation instead.
翻译:由于合成材料的广泛应用,多元材料的多尺度模拟是固态机械学和材料科学中一个流行和重要的科目。然而,传统的FE2(无限元素2)办法可能成本很高,特别是当微问题不是线性时。在本文件中,我们考虑微问题是骨折的阶段场配制。我们采用了当地线性嵌入(LLEE)多元学习方法,一种非线性尺寸减小方法,以提取含有代号体积元素中以区划代表为代表的初始微积架模式的元件。然后,与任何其他微积架模式(例如,固定负荷的进化阶段场)相应的产出数据,可以用最低限度的计算方法精确地重建。这种方法有两个特点:方案的最低参数和具体输入错误条。后一种特征使得能够就是否使用拟议的、费用较低的重建,或使用精确但费用昂贵的高纤维计算方法的任何新投入制定适应战略。