The multiscale simulation of heterogeneous materials is a popular and important subject in solid mechanics and materials science due to the wide application of composite materials. However, the classical FE2 (finite element2) scheme can be costly, especially when the microproblem is nonlinear. In this paper, we consider the case when the microproblem is the phase field formulation for fracture. We adopt the locally linear embedding (LLE) manifold learning approach, a method for non-linear dimension reduction, to extract the manifold that contains a collection of phase-field-represented initial microcrack patterns in the representative volume element (RVE). Then the output data corresponding to any other microcrack pattern, e.g., the evolved phase field at a fixed load, can be accurately reconstructed using the learned manifold with minimum computation. The method has two features: a minimum number of parameters for the scheme, and an input-specific error bar. The latter feature enables an adaptive strategy for any new input on whether to use the proposed, less expensive reconstruction, or to use an accurate but costly high-fidelity computation instead.


翻译:由于合成材料的广泛应用,多元材料的多尺度模拟是固态机械学和材料科学中一个流行和重要的科目。然而,传统的FE2(无限元素2)办法可能成本很高,特别是当微问题不是线性时。在本文件中,我们考虑微问题是骨折的阶段场配制。我们采用了当地线性嵌入(LLEE)多元学习方法,一种非线性尺寸减小方法,以提取含有代号体积元素中以区划代表为代表的初始微积架模式的元件。然后,与任何其他微积架模式(例如,固定负荷的进化阶段场)相应的产出数据,可以用最低限度的计算方法精确地重建。这种方法有两个特点:方案的最低参数和具体输入错误条。后一种特征使得能够就是否使用拟议的、费用较低的重建,或使用精确但费用昂贵的高纤维计算方法的任何新投入制定适应战略。

0
下载
关闭预览

相关内容

流形学习,全称流形学习方法(Manifold Learning),自2000年在著名的科学杂志《Science》被首次提出以来,已成为信息科学领域的研究热点。在理论和应用上,流形学习方法都具有重要的研究意义。假设数据是均匀采样于一个高维欧氏空间中的低维流形,流形学习就是从高维采样数据中恢复低维流形结构,即找到高维空间中的低维流形,并求出相应的嵌入映射,以实现维数约简或者数据可视化。它是从观测到的现象中去寻找事物的本质,找到产生数据的内在规律。
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Phase-aware Speech Enhancement with Deep Complex U-Net
Learning to Importance Sample in Primary Sample Space
Arxiv
8+阅读 · 2018年7月12日
Arxiv
5+阅读 · 2018年6月12日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员