In cross-lingual speech synthesis, the speech in various languages can be synthesized for a monoglot speaker. Normally, only the data of monoglot speakers are available for model training, thus the speaker similarity is relatively low between the synthesized cross-lingual speech and the native language recordings. Based on the multilingual transformer text-to-speech model, this paper studies a multi-task learning framework to improve the cross-lingual speaker similarity. To further improve the speaker similarity, joint training with a speaker classifier is proposed. Here, a scheme similar to parallel scheduled sampling is proposed to train the transformer model efficiently to avoid breaking the parallel training mechanism when introducing joint training. By using multi-task learning and speaker classifier joint training, in subjective and objective evaluations, the cross-lingual speaker similarity can be consistently improved for both the seen and unseen speakers in the training set.


翻译:在跨语文的语音合成中,可以将各种语言的演讲合成为单声调发言者,通常只有单声调发言者的数据可供示范培训使用,因此,在综合的跨语文发言和母语录音之间,发言者的相似性相对较低。根据多语种变压器文本到语音模式,本文件研究一个多语种学习框架,以改善跨语种发言者的相似性。为了进一步改善发言者的相似性,建议与发言者分类师进行联合培训。在这里,提议采用一个类似于平行的分类方法,对变压器模式进行培训,以避免在引入联合培训时打破平行的培训机制。通过在主观和客观的评价中采用多语种学习和语言分类联合培训,可以不断改进跨语种语言的类似性,既适用于在培训组中看到的发言者,也适用于在培训组中看不见的发言者。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
13+阅读 · 2018年4月6日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关资讯
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员