The maximum likelihood estimator plays a fundamental role in statistics. However, for many models, the estimators do not have closed-form expressions. This limitation can be significant in situations where estimates and predictions need to be computed in real-time, such as in applications based on embedded technology, in which numerical methods can not be implemented. This paper provides a modification in the maximum likelihood estimator that allows us to obtain the estimators in closed-form expressions under some conditions. Under mild conditions, the estimator is invariant under one-to-one transformations, consistent, and has an asymptotic normal distribution. The proposed modified version of the maximum likelihood estimator is illustrated on the Gamma, Nakagami, and Beta distributions and compared with the standard maximum likelihood estimator.
翻译:最大概率估计值在统计中起着根本作用。 但是,对于许多模型来说,估计值没有封闭式表达式。 在需要实时计算估计数和预测的情况下,这种限制可能很重要,例如在基于嵌入技术的应用程序中,无法采用数字方法。本文对最大概率估计值作了修改,使我们能够在某些条件下获得封闭式表达式的估计值。在较轻的条件下,估计值在一对一的变换下是无变的,始终一致,并且具有无症状的正常分布。提议的最大概率估计值的修改版本在Gamma、Nakagami和Beta分布上展示,并与标准最大概率估计值进行比较。