The aim of paper is to apply two types of particle swarm optimization, global best andlocal best PSO to a constrained maximum likelihood estimation problem in pseudotime anal-ysis, a sub-field in bioinformatics. The results have shown that particle swarm optimizationis extremely useful and efficient when the optimization problem is non-differentiable and non-convex so that analytical solution can not be derived and gradient-based methods can not beapplied.


翻译:纸面的目的是将两种类型的粒子群优化,即全球最佳和本地最佳的PSO应用于生物信息学中一个亚领域,即假时代肛交中受限制的最大可能性估算问题。结果显示,当优化问题不区分和不凝固时,粒子群优化极为有用和有效,因此无法得出分析解决办法,而且不能采用梯度方法。

0
下载
关闭预览

相关内容

在统计学中,最大似然估计(maximum likelihood estimation, MLE)是通过最大化似然函数估计概率分布参数的一种方法,使观测数据在假设的统计模型下最有可能。参数空间中使似然函数最大化的点称为最大似然估计。最大似然逻辑既直观又灵活,因此该方法已成为统计推断的主要手段。
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
29+阅读 · 2020年12月14日
【最受欢迎的概率书】《概率论:理论与实例》,490页pdf
专知会员服务
163+阅读 · 2020年11月13日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月10日
Arxiv
0+阅读 · 2021年6月9日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
29+阅读 · 2020年12月14日
【最受欢迎的概率书】《概率论:理论与实例》,490页pdf
专知会员服务
163+阅读 · 2020年11月13日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员