The aim of paper is to apply two types of particle swarm optimization, global best andlocal best PSO to a constrained maximum likelihood estimation problem in pseudotime anal-ysis, a sub-field in bioinformatics. The results have shown that particle swarm optimizationis extremely useful and efficient when the optimization problem is non-differentiable and non-convex so that analytical solution can not be derived and gradient-based methods can not beapplied.
翻译:纸面的目的是将两种类型的粒子群优化,即全球最佳和本地最佳的PSO应用于生物信息学中一个亚领域,即假时代肛交中受限制的最大可能性估算问题。结果显示,当优化问题不区分和不凝固时,粒子群优化极为有用和有效,因此无法得出分析解决办法,而且不能采用梯度方法。