Nowadays, plenty of deep learning technologies are being applied to all aspects of autonomous driving with promising results. Among them, object detection is the key to improve the ability of an autonomous agent to perceive its environment so that it can (re)act. However, previous vision-based object detectors cannot achieve satisfactory performance under real-time driving scenarios. To remedy this, we present the real-time steaming perception system in this paper, which is also the 2nd Place solution of Streaming Perception Challenge (Workshop on Autonomous Driving at CVPR 2021) for the detection-only track. Unlike traditional object detection challenges, which focus mainly on the absolute performance, streaming perception task requires achieving a balance of accuracy and latency, which is crucial for real-time autonomous driving. We adopt YOLOv5 as our basic framework, data augmentation, Bag-of-Freebies, and Transformer are adopted to improve streaming object detection performance with negligible extra inference cost. On the Argoverse-HD test set, our method achieves 33.2 streaming AP (34.6 streaming AP verified by the organizer) under the required hardware. Its performance significantly surpasses the fixed baseline of 13.6 (host team), demonstrating the potentiality of application.


翻译:目前,大量深层次的学习技术正在应用于自主驾驶的各个方面,并取得了有希望的成果。其中,物体探测是提高自主驾驶者对自身环境感知能力的关键,以便能够(重新)行动。然而,以往的基于视觉的物体探测器在实时驾驶情景下无法取得令人满意的性能。为了纠正这种情况,我们在本文件中介绍了实时蒸汽感知系统,这也是移动感知挑战的第二站点解决方案(CVPR 2021自动驾驶讲习班),用于探测专用轨道。与主要侧重于绝对性能的传统物体探测挑战不同,流动感知任务需要实现准确性和耐久性平衡,这对于实时自主驾驶至关重要。我们采用YOLOv5作为我们的基本框架,数据增强、Freebies袋和变压器,用微不足道的超高的推断成本来改进流体物体探测性能。在Argovers-HD测试集中,我们的方法达到了33.2流的AP(由组织者核实的34.6流式AP),在所需的硬件应用下大大超过其固定性能。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Arxiv
12+阅读 · 2021年6月21日
VIP会员
相关VIP内容
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Top
微信扫码咨询专知VIP会员