The difference-in-differences (DID) design is one of the most popular methods used in empirical economics research. However, there is almost no work examining what the DID method identifies in the presence of a misclassified treatment variable. This paper studies the identification of treatment effects in DID designs when the treatment is misclassified. Misclassification arises in various ways, including when the timing of a policy intervention is ambiguous or when researchers need to infer treatment from auxiliary data. We show that the DID estimand is biased and recovers a weighted average of the average treatment effects on the treated (ATT) in two subpopulations -- the correctly classified and misclassified groups. In some cases, the DID estimand may yield the wrong sign and is otherwise attenuated. We provide bounds on the ATT when the researcher has access to information on the extent of misclassification in the data. We demonstrate our theoretical results using simulations and provide two empirical applications to guide researchers in performing sensitivity analysis using our proposed methods.
翻译:差异(DID)设计是经验经济学研究中最常用的方法之一。然而,几乎没有研究在错误分类治疗变量存在的情况下,“Did”方法所查明的治疗效果。本文研究在错误分类治疗时,“DD”设计中的治疗效果。错误分类以各种方式出现,包括政策干预的时机不明确,或研究人员需要从辅助数据中推断治疗。我们表明“Did Did estimand”是有偏向的,并恢复了两个子群群(正确分类和错误分类的群体)中被治疗者平均治疗效果的加权平均值。在某些情况下,“DAD estimand”可能会产生错误的信号,否则会减弱。当研究人员能够获得关于数据分类错误程度的信息时,我们提供了关于“AT”的界限。我们用模拟来展示我们的理论结果,并提供两种经验应用来指导研究人员使用我们提议的方法进行敏感性分析。