This paper examines regression-adjusted estimation and inference of unconditional quantile treatment effects (QTEs) under covariate-adaptive randomizations (CARs). Datasets from field experiments usually contain extra baseline covariates in addition to the strata indicators. We propose to incorporate these extra covariates via auxiliary regressions in the estimation and inference of unconditional QTEs. We establish the consistency, limit distribution, and validity of the multiplier bootstrap of the QTE estimator under CARs. The auxiliary regression may be estimated parametrically, nonparametrically, or via regularization when the data are high-dimensional. Even when the auxiliary regression is misspecified, the proposed bootstrap inferential procedure still achieves the nominal rejection probability in the limit under the null. When the auxiliary regression is correctly specified, the regression-adjusted estimator achieves the minimum asymptotic variance. We also derive the optimal pseudo true values for the potentially misspecified parametric model that minimize the asymptotic variance of the corresponding QTE estimator. Our estimation and inferential methods can be implemented without tuning parameters and they allow for common choices of auxiliary regressions such as linear, probit and logit regressions despite the fact that these regressions may be misspecified. Finite-sample performance of the new estimation and inferential methods is assessed in simulations and an empirical application studying the impact of child health and nutrition on educational outcomes is included.
翻译:本文审查了在共变调整随机(CARs)下对无条件微量处理效果的回归调整估计和推断。实地实验的数据集通常除层次指标外还包含额外的基线共变值。我们提议通过辅助回归将这些额外共变值纳入无条件QTE的估计和推论中。我们在CARs下建立 QTE 估测器的乘数靴带的一致性、限制分布和有效性。辅助回归可能是对称性估算,而不是对称性估算,或在数据高度时通过正规化估算。即使在辅助回归定义错误时,拟议的靴带推断程序通常也包含额外的基准共变数。当辅助回归得到正确说明时,回归调整估计的估测器将达到最小值的负值差异。我们还可以为可能误定义的参数得出最优的伪真实值,以尽量减少相应的QTE估测器的不均匀差异。我们关于辅助回归作用的估算和推论假设程序仍然在无效限度内达到名义拒绝概率概率概率的概率概率概率概率概率概率概率概率概率概率概率概率概率概率概率概率。我们估算和推算的精确推算法中,这些推算法的精确推算法的精确推算法将允许这些推算和推算法的后推算法的精确推算法的精确推算法将允许进行。