This paper examines regression-adjusted estimation and inference of unconditional quantile treatment effects (QTEs) under covariate-adaptive randomizations (CARs). Datasets from field experiments usually contain extra baseline covariates in addition to the strata indicators. We propose to incorporate these extra covariates via auxiliary regressions in the estimation and inference of unconditional QTEs. We establish the consistency, limit distribution, and validity of the multiplier bootstrap of the QTE estimator under CARs. The auxiliary regression may be estimated parametrically, nonparametrically, or via regularization when the data are high-dimensional. Even when the auxiliary regression is misspecified, the proposed bootstrap inferential procedure still achieves the nominal rejection probability in the limit under the null. When the auxiliary regression is correctly specified, the regression-adjusted estimator achieves the minimum asymptotic variance. We also derive the optimal pseudo true values for the potentially misspecified parametric model that minimize the asymptotic variance of the corresponding QTE estimator. Our estimation and inferential methods can be implemented without tuning parameters and they allow for common choices of auxiliary regressions such as linear, probit and logit regressions despite the fact that these regressions may be misspecified. Finite-sample performance of the new estimation and inferential methods is assessed in simulations and an empirical application studying the impact of child health and nutrition on educational outcomes is included.


翻译:本文审查了在共变调整随机(CARs)下对无条件微量处理效果的回归调整估计和推断。实地实验的数据集通常除层次指标外还包含额外的基线共变值。我们提议通过辅助回归将这些额外共变值纳入无条件QTE的估计和推论中。我们在CARs下建立 QTE 估测器的乘数靴带的一致性、限制分布和有效性。辅助回归可能是对称性估算,而不是对称性估算,或在数据高度时通过正规化估算。即使在辅助回归定义错误时,拟议的靴带推断程序通常也包含额外的基准共变数。当辅助回归得到正确说明时,回归调整估计的估测器将达到最小值的负值差异。我们还可以为可能误定义的参数得出最优的伪真实值,以尽量减少相应的QTE估测器的不均匀差异。我们关于辅助回归作用的估算和推论假设程序仍然在无效限度内达到名义拒绝概率概率概率的概率概率概率概率概率概率概率概率概率概率概率概率概率概率概率概率。我们估算和推算的精确推算法中,这些推算法的精确推算法的精确推算法将允许这些推算和推算法的后推算法的精确推算法的精确推算法将允许进行。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
自然语言处理顶会EMNLP2018接受论文列表!
专知
87+阅读 · 2018年8月26日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
自然语言处理顶会EMNLP2018接受论文列表!
专知
87+阅读 · 2018年8月26日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员