This paper develops tests for the correct specification of the conditional variance function in GARCH models when the true parameter may lie on the boundary of the parameter space. The test statistics considered are of Kolmogorov-Smirnov and Cram\'{e}r-von Mises type, and are based on a certain empirical process marked by centered squared residuals. The limiting distributions of the test statistics are not free from (unknown) nuisance parameters, and hence critical values cannot be tabulated. A novel bootstrap procedure is proposed to implement the tests; it is shown to be asymptotically valid under general conditions, irrespective of the presence of nuisance parameters on the boundary. The proposed bootstrap approach is based on shrinking of the parameter estimates used to generate the bootstrap sample toward the boundary of the parameter space at a proper rate. It is simple to implement and fast in applications, as the associated test statistics have simple closed form expressions. A simulation study demonstrates that the new tests: (i) have excellent finite sample behavior in terms of empirical rejection probabilities under the null as well as under the alternative; (ii) provide a useful complement to existing procedures based on Ljung-Box type approaches. Two data examples are considered to illustrate the tests.


翻译:本文开发了在参数空间边界可能存在真实参数的情况下对 GARCH 模型中有条件差异函数的正确规格的测试。 所考虑的测试统计为 Kolmogorov- Smirnov 和 Cram\' {e}r- von Mises 类型, 并且基于以中方平方残余物为标志的某种经验过程。 测试统计数据的有限分布并非没有( 已知的) 骚扰参数, 因此无法制表显示关键值 。 提议了一个新颖的“ 靴套” 程序来实施测试; 在一般条件下, 它被证明是完全有效的, 不论边界上存在扰动参数。 提议的靴套方法以缩小参数估计数为基础, 以便以适当的速生成向参数空间边界边缘的靴套样样本。 由于相关的测试统计数据有简单的封闭形式表达方式, 因而在应用中比较简单。 模拟研究显示, 新的测试:( ) 在无效状态下和替代状态下的经验拒绝概率方面, 都具有极有限的抽样行为; 拟议的靴套方法是以两种方法为基础, 。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
61+阅读 · 2020年3月4日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
61+阅读 · 2020年3月4日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员