Modern CNNs are learning the weights of vast numbers of convolutional operators. In this paper, we raise the fundamental question if this is actually necessary. We show that even in the extreme case of only randomly initializing and never updating spatial filters, certain CNN architectures can be trained to surpass the accuracy of standard training. By reinterpreting the notion of pointwise ($1\times 1$) convolutions as an operator to learn linear combinations (LC) of frozen (random) spatial filters, we are able to analyze these effects and propose a generic LC convolution block that allows tuning of the linear combination rate. Empirically, we show that this approach not only allows us to reach high test accuracies on CIFAR and ImageNet but also has favorable properties regarding model robustness, generalization, sparsity, and the total number of necessary weights. Additionally, we propose a novel weight sharing mechanism, which allows sharing of a single weight tensor between all spatial convolution layers to massively reduce the number of weights.


翻译:现代有线电视新闻网正在学习大量革命操作员的重量。 在本文中,我们提出一个根本问题,如果这确实有必要的话。我们表明,即使在仅随机初始化和从未更新空间过滤器的极端情况下,某些有线电视新闻网架构也可以接受培训,以超过标准培训的准确性。通过重新解释点化(1美元1美元)概念,作为操作员来学习冷冻(随机)空间过滤器的线性组合(LC),我们可以分析这些效应,并提出一个通用的LC convolution块,以调整线性组合速率。我们生动地表明,这一方法不仅使我们能够在CIFAR和图像网络上达到高测试的精度,而且在模型稳健性、一般化、宽度和必要重量总数方面也具有有利的特性。此外,我们提议了一个新的权重共享机制,允许在所有空间革命层之间共享一个单一的重量阀,以大规模减少重量数量。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
基于LSTM-CNN组合模型的Twitter情感分析(附代码)
机器学习研究会
50+阅读 · 2018年2月21日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
13+阅读 · 2021年6月14日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
基于LSTM-CNN组合模型的Twitter情感分析(附代码)
机器学习研究会
50+阅读 · 2018年2月21日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员