Deep-unfolding neural networks (NNs) have received great attention since they achieve satisfactory performance with relatively low complexity. Typically, these deep-unfolding NNs are restricted to a fixed-depth for all inputs. However, the optimal number of layers required for convergence changes with different inputs. In this paper, we first develop a framework of deep deterministic policy gradient (DDPG)-driven deep-unfolding with adaptive depth for different inputs, where the trainable parameters of deep-unfolding NN are learned by DDPG, rather than updated by the stochastic gradient descent algorithm directly. Specifically, the optimization variables, trainable parameters, and architecture of deep-unfolding NN are designed as the state, action, and state transition of DDPG, respectively. Then, this framework is employed to deal with the channel estimation problem in massive multiple-input multiple-output systems. Specifically, first of all we formulate the channel estimation problem with an off-grid basis and develop a sparse Bayesian learning (SBL)-based algorithm to solve it. Secondly, the SBL-based algorithm is unfolded into a layer-wise structure with a set of introduced trainable parameters. Thirdly, the proposed DDPG-driven deep-unfolding framework is employed to solve this channel estimation problem based on the unfolded structure of the SBL-based algorithm. To realize adaptive depth, we design the halting score to indicate when to stop, which is a function of the channel reconstruction error. Furthermore, the proposed framework is extended to realize the adaptive depth of the general deep neural networks (DNNs). Simulation results show that the proposed algorithm outperforms the conventional optimization algorithms and DNNs with fixed depth with much reduced number of layers.


翻译:深展开神经网络自面世以来,由于在相对较低的复杂性下实现了令人满意的性能,因此备受关注。通常,这些深展开神经网络对于所有输入都受到固定深度的限制。然而,随着不同输入的变化,收敛所需的最佳层数会发生变化。本文首先提出了一种深确定性策略梯度 (DDPG) 驱动的自适应深度深展开架构,完成不同输入下深度的自适应调整,其中深展开神经网络的可训练参数是由 DDPG 学习得到的,而不是直接通过随机梯度下降算法更新的。具体而言,优化变量、可训练参数和深展开神经网络的结构更分别被设计为 DDPG 状态、动作和状态转移。然后,我们将该架构应用于重要的多输入多输出系统信道估计问题。首先,我们将信道估计问题转化为具有离散基底的问题,并提出一种基于稀疏贝叶斯学习的算法来解决它。其次,我们将基于稀疏贝叶斯算法的算法展开为多层结构,并引入了一组可训练参数。第三,我们基于深展开网络结构,利用提出的 DDPG-驱动的深展开框架来解决这个信道估计问题。为了实现自适应深度,我们设计了停止得分,以指示何时停止计算,其是信道重构误差的函数。此外,我们还将所提出的框架扩展到一般深度神经网络结构的自适应深度。仿真结果表明,与传统优化算法和固定深度的深度神经网络相比,所提出的算法大大减少了层数并取得了优异的效果。

0
下载
关闭预览

相关内容

专知会员服务
27+阅读 · 2021年8月2日
专知会员服务
19+阅读 · 2021年5月30日
ECCV 2022 Oral | 自反馈学习的mixup训练框架—AutoMix
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【泡泡一分钟】用于深度双目的非监督适应方法(ICCV-2017)
泡泡机器人SLAM
10+阅读 · 2018年10月7日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
自适应注意力机制在Image Caption中的应用
PaperWeekly
10+阅读 · 2018年5月10日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
8+阅读 · 2008年12月31日
Soft Merging of Experts with Adaptive Routing
Arxiv
0+阅读 · 2023年6月6日
Arxiv
0+阅读 · 2023年6月6日
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关VIP内容
相关资讯
ECCV 2022 Oral | 自反馈学习的mixup训练框架—AutoMix
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【泡泡一分钟】用于深度双目的非监督适应方法(ICCV-2017)
泡泡机器人SLAM
10+阅读 · 2018年10月7日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
自适应注意力机制在Image Caption中的应用
PaperWeekly
10+阅读 · 2018年5月10日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
8+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员